Volume No. :   7

Issue No. :  4

Year :  2017

ISSN Print :  2231-5705

ISSN Online :  2231-5713


Allready Registrered
Click to Login

Formulation and Optimization of Silymarin Loaded PLGA Nanoparticle for liver targeting

Address:   Irfan M. Saiyyad1*, D.S. Bhambere2, Dr. Sanjay Kshirsagar3
1Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik,
2Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik, Maharashtra, India.
3Principal of MET’s Institute of Pharmacy, Adgaon, Nashik.
*Corresponding Author
DOI No: 10.5958/2231-5713.2017.00032.0

The aim of present study was to prepare silymarin loaded PLGA polymeric nanoparticles for liver targeting by solvent evaporation method. Special attention was devoted to targeted drug delivery to liver and then the controlled release of drug from the polymeric nanoparticles. PLGA were employed as a bio-degradable polymer for targeting and controlled release of drug. The particle size of the resultant PN’s was mainly controlled by the agitation speed during the manufacturing process and polymer concentration. PLGA nanoparticles have the stability problem hence is PVA used as Surfactant as well as Stabilizing agent for the production of stable nanoparticles. Following particle size, zeta potential, and DSC and SEM analysis. The Silymarin nanoparticles were prepared with different ratio of polymer (PLGA), surfactant (PVA) and solvent (acetone) by using solvent evaporation method. The organic phase {drug + polymer (1:1, 1:3, 1:5) + solvent} was added to aqueous phase {water + PVA (1, 2, and 3 %)} and subjected for homogenization with different rpm. The formulation was heated with magnetic stirrer for evaporation of solvent for 2 hrs. After evaporation of solvent, the formulation was centrifuged and supernatant was collected by filtration and dried at room temperature. The formed nanoparticles were evaluated for particle size, entrapment efficiency and in vitro release. The Nanoparticle was obtained having Particle Size in between 422.4-294.3 nm. Entrapment Efficiency in between 74.30-99.8% and % drug release in between 73.53-98.67% which follows the sustained release behavior. From given Data it concludes that Nanoparticle containing PLGA exhibiting excellent sustained release characteristics and Entrapment efficiency and also Good particle Size. Hence After stability studies all formulations were found to be physically and chemically stable.
Silymarin; PLGA; Polymeric Nanoparticle; PVA; Control release
Irfan M. Saiyyad, D. S. Bhambere, Sanjay Kshirsagar. Formulation and Optimization of Silymarin Loaded PLGA Nanoparticle for liver targeting. Asian J. Pharm. Tech. 2017; 7 (4):209-220 .
[View HTML]      [View PDF]

Visitor's No. :   165822