Author(s): Mukund M. Pache, Rutuja R. Pangavhane, Siddhi V. Nikam, Ramdas B. Rode, Avinash B. Darekar

Email(s): mukundpache918@mail.com

DOI: 10.52711/2231-5713.2025.00045   

Address: Mukund M. Pache1*, Rutuja R. Pangavhane2, Siddhi V. Nikam3, Ramdas B. Rode4, Avinash B. Darekar5
1,2,3Department of Pharmacy, K. V. N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education & Research, Nashik, 422 002, Maharashtra, India.
4Assistant professor, K. V. N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education & Research, Nashik, 422 002, Maharashtra, India.
5Principal, K. V. N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education & Research, Nashik, 422 002, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 3,     Year - 2025


ABSTRACT:
The precise genome editing capabilities of CRISPR-Cas9 have transformed pharmaceutical research. This potent tool could influence drug development, disease modelling, and gene therapy. CRISPR-Cas9, originating from the immune system of bacteria, has transformed genetic engineering through enhanced precision in gene modification. Advancements have enhanced the comprehension of genetic disorders, the treatment of complex diseases, and the improvement of diagnostics. CRISPR is utilised in drug development through functional genomics and disease models to identify targets, accelerate drug discovery, and enhance the understanding of disease mechanisms. CRISPR therapies demonstrate the system's capacity to address incurable diseases such as sickle cell disease, beta-thalassemia, and specific cancers. CRISPR in clinical applications encounters obstacles, such as off-target effects, limitations in delivery mechanisms, and the necessity for scalable production for extensive clinical utilisation. Ethical considerations include the risks of human germline editing, equitable access to CRISPR-based therapies, and obtaining informed consent from participants in experimental treatments. This review elucidates the advantages, disadvantages, and ethical considerations of CRISPR. It proposes research avenues and underscores the necessity for a definitive regulatory framework and global ethical standards for the application of CRISPR in pharmaceutical research.


Cite this article:
Mukund M. Pache, Rutuja R. Pangavhane, Siddhi V. Nikam, Ramdas B. Rode, Avinash B. Darekar. CRISPR-Cas9 in Pharmaceutical Research: Applications, Challenges, Ethical Considerations and Future Directions. Asian Journal of Pharmacy and Technology. 2025; 15(3):296-4. doi: 10.52711/2231-5713.2025.00045

Cite(Electronic):
Mukund M. Pache, Rutuja R. Pangavhane, Siddhi V. Nikam, Ramdas B. Rode, Avinash B. Darekar. CRISPR-Cas9 in Pharmaceutical Research: Applications, Challenges, Ethical Considerations and Future Directions. Asian Journal of Pharmacy and Technology. 2025; 15(3):296-4. doi: 10.52711/2231-5713.2025.00045   Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-3-13


REFERENCES: 
1.    Barrangou R, Fremaux C, Deveau H, et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science. 2007; 315(5819): 1709–1712; doi: 10.1126/science.1138140.
2.    Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096; doi: 10.1126/science.1258096.
3.    Jinek M, Chylinski K, Fonfara I, et al. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012; 337(6096):816–821; doi: 10.1126/science.1225829.
4.    Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–131; doi: 10.1038/nm.3793.
5.    Heidenreich M, Zhang F. Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci. 2016; 17(1): 36–44; doi: 10.1038/nrn.2015.2.
6.    Shalem O, Sanjana NE, Hartenian E, et al. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science. 2014; 343(6166): 84–87; doi: 10.1126/science.1247005.
7.    Chen S, Sanjana NE, Zheng K, et al. Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis. Cell. 2015; 160(6): 1246–1260; doi: 10.1016/j.cell.2015.02.038.
8.    Baltimore D, Berg P, Botchan M, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015; 348(6230): 36–38; doi: 10.1126/science. aab1028.
9.    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32(4): 347–355; doi: 10.1038/nbt.2842.
10.    Cong L, Ran FA, Cox D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013; 339(6121): 819–823; doi: 10.1126/science.1231143.
11.    Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature. 2017; 550(7676): 407–410; doi: 10.1038/nature24268.
12.    Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature. 2017; 550(7675): 280–284; doi: 10.1038/nature24049.
13.    Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013; 31(9): 822–826; doi: 10.1038/nbt.2623.
14.    Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017; 551(7681): 464–471; doi: 10.1038/nature24644.
15.    Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature. 2019; 571(7764): 219–225; doi: 10.1038/s41586-019-1323-z.
16.    Park RJ, Wang T, Koundakjian D, et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet.  2017; 49(2): 193–203; doi: 10.1038/ng.3741.
17.    Sen A, Kumar K, Khan S, et al. Current Therapy in Cancer: Advances, Challenges, and Future Directions. AJNER. 2024; 77–84; doi: 10.52711/2349-2996.2024.00016.
18.    Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016; 34(9): 933–941; doi: 10.1038/nbt.3659.
19.    Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016; 539(7629): 384–389; doi: 10.1038/nature20134.
20.    Schwank G, Koo B-K, Sasselli V, et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell. 2013; 13(6): 653–658; doi: 10.1016/j.stem.2013.11.002.
21.    Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N Engl J Med. 2021; 384(3): 252–260; doi: 10.1056/NEJMoa2031054.
22.    Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020; 579(7798): 185–185; doi: 10.1038/d41586-020-00655-8.
23.    Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling. Cell. 2014; 159(2): 440–455; doi: 10.1016/j.cell.2014.09.014.
24.    Sasaguri H, Nilsson P, Hashimoto S, et al. APP mouse models for Alzheimer’s disease preclinical studies. The EMBO Journal. 2017; 36(17): 2473–2487; doi: 10.15252/embj.201797397.
25.    Jisha K, Venkateswaramurthy N, Sambathkumar R. The Influence of Pharmacogenetics in Cancer Chemotherapy. Rese Jour Pharmacol and Pharmacod. 2020; 12(1): 29; doi: 10.5958/2321-5836.2020.00007.5.
26.    Wilkinson MD, Dumontier M, Aalbersberg IjJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016; 3(1): 160018; doi: 10.1038/sdata.2016.18.
27.    Yau A, Simbak NB, Haque M. Pharmacogenovigilance: A Potential Tool in Pharmacovigilance. 2014.
28.    Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 31(9): 827–832; doi: 10.1038/nbt.2647.
29.    Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016; 351(6268): 84–88; doi: 10.1126/science. aad5227.
30.    Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014; 32(3): 279–284; doi: 10.1038/nbt.2808.
31.    Naldini L. Gene therapy returns to centre stage. Nature. 2015; 526(7573): 351–360; doi: 10.1038/nature15818.
32.    Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle‐based delivery of CRISPR/Cas9 therapeutics. WIREs Nanomed Nanobiotechnol. 2020; 12(3): e1609; doi: 10.1002/wnan.1609.
33.    Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016; 529(7587): 490–495; doi: 10.1038/nature16526.
34.    Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun. 2018; 9(1): 3497; doi: 10.1038/s41467-018-05843-9.
35.    Xu L, Wang J, Liu Y, et al. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N Engl J Med. 2019; 381(13): 1240–1247; doi: 10.1056/NEJMoa1817426.
36.    Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004; 22(11): 1393–1398; doi: 10.1038/nbt1026.
37.    Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology. 2018; 42(8): 487–500; doi: 10.1053/j.semperi.2018.09.003.
38.    Dutta S, Ray B, Raut S, et al. Nonviral gene therapy: Technology and application. Research Journal of Science and Technology. 2021; 13(1): 13–22; doi: 10.5958/2349-2988.2021.00003.6.
39.    Ormond KE, Mortlock DP, Scholes DT, et al. Human Germline Genome Editing. The American Journal of Human Genetics. 2017; 101(2): 167–176; doi: 10.1016/j.ajhg.2017.06.012.
40.    Lanphier E, Urnov F, Haecker SE, et al. Don’t edit the human germ line. Nature. 2015; 519(7544):410–411; doi: 10.1038/519410a.
41.    Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology. 2019; 431(1): 88–101; doi: 10.1016/j.jmb.2018.05.044.
42.    Evitt NH, Mascharak S, Altman RB. Human Germline CRISPR-Cas Modification: Toward a Regulatory Framework. The American Journal of Bioethics. 2015; 15(12): 25–29; doi: 10.1080/15265161.2015.1104160.
43.    Baylis F, McLeod M. First-in-human Phase 1 CRISPR Gene Editing Cancer Trials: Are We Ready? CGT. 2018; 17(4); doi: 10.2174/1566523217666171121165935.
44.    Nicol D, Eckstein L, Morrison M, et al. Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic. Genome Med. 2017; 9(1): 85; doi: 10.1186/s13073-017-0475-4.
45.    Lin Y, Li J, Li C, et al. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol. 2022; 10: 919155; doi: 10.3389/fcell.2022.919155.
46.    Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. Journal of Experimental Biology. 2017; 220(17): 3007–3016; doi: 10.1242/jeb.147058.
47.    Khosravi MA, Abbasalipour M, Concordet J-P, et al. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. European Journal of Pharmacology. 2019; 854: 398–405; doi: 10.1016/j.ejphar.2019.04.042.
48.    Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020; 367(6481): eaba7365; doi: 10.1126/science. aba7365.
49.    Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. Journal of Clinical Investigation. 2017; 127(7): 2719–2724; doi: 10.1172/JCI92087.
50.    Karimian A, Gorjizadeh N, Alemi F, et al. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sciences. 2020; 259: 118165; doi: 10.1016/j.lfs.2020.118165.
51.    Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019; 14(10): 2986–3012; doi: 10.1038/s41596-019-0210-2.
52.    De Puig H, Lee RA, Najjar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci Adv. 2021; 7(32):  eabh2944; doi: 10.1126/sciadv. abh2944.
53.    Mukund Pache SN. Antibiotic Resistance: Current Challenges and Future Directions. 2025; doi: 10.5281/ZENODO.14690670.
54.    Mani S, Devi PB. Study on Genetically Engineered Vesicular Stomatitis Virus for the Application of Treating Malignant Diseases using Gene Therapy. Rese Jour of Pharm and Technol. 2019; 12(11): 5371; doi: 10.5958/0974-360X.2019.00932.6.
55.    Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun. 2019; 10(1): 1842; doi: 10.1038/s41467-019-09693-x.
56.    Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576(7785): 149–157; doi: 10.1038/s41586-019-1711-4.
57.    Zeballos C. MA, Gaj T. Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology. 2021; 39(7): 692–705; doi: 10.1016/j.tibtech.2020.10.010.
58.    Chuai G, Ma H, Yan J, et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 2018; 19(1):80; doi: 10.1186/s13059-018-1459-4.
59.    Vadapalli S, Abdelhalim H, Zeeshan S, et al. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Briefings in Bioinformatics. 2022; 23(5): bbac191; doi: 10.1093/bib/bbac191.
60.    Pache MM, Pangavhane RR, Jagtap MN, Darekar AB. The AI-driven future of drug discovery: innovations, applications, and challenges. Asian J Res Pharm Sci. 2025; 15(1): 61-67. doi:10.52711/2231-5659.2025.00009
61.    Ramayanam NR, Amarnath RN, Vijayakumar TM. Pharmacogenetic Biomarkers and Personalized Medicine: Upcoming Concept in Pharmacotherapy. RJPT. 2022; 4289–4292; doi: 10.52711/0974-360X.2022.00720.
62.    Hsu M-N, Chang Y-H, Truong VA, et al. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances. 2019; 37(8): 107447; doi: 10.1016/j.biotechadv.2019.107447.
63.    Anliker B, Childs L, Rau J, et al. Regulatory Considerations for Clinical Trial Applications with CRISPR-Based Medicinal Products. The CRISPR Journal. 2022; 5(3): 364–376; doi: 10.1089/crispr.2021.0148.

Recomonded Articles:

Author(s): Hafsa, Asfa, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00001.0         Access: Open Access Read More

Author(s): Juveriya Fatima, Saniya Khan, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00009.5         Access: Open Access Read More

Author(s): Manohar D. Kengar, Rohit S. Howal, Dattatray B. Aundhakar, Amit V. Nikam, Priyajit S. Hasabe

DOI: 10.5958/2231-5713.2019.00010.2         Access: Open Access Read More

Author(s): Avinash B. Thalkari, Pawan N. Karwa, Chandrakant S. Gawli

DOI: 10.5958/2231-5713.2018.00017.X         Access: Open Access Read More

Author(s): Safa Mohammed Sadiq, Amtul Kareem, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00002.2         Access: Open Access Read More

Author(s): Abhishek K. Sah, Manmohan Singh Jangdey, Sanjay J. Daharwal

DOI:         Access: Open Access Read More

Author(s): Abhijit Ray

DOI:         Access: Open Access Read More

Author(s): Vinay Bhagat, Vivek Karel, Shivani Chaudhary, Kapil Kumar Verma

DOI: 10.52711/2231-5713.2024.00008         Access: Open Access Read More

Author(s): Sanjay Kshirsagar, Manisha Choudhari, Reshmi Sathyan, Shruti Dhore

DOI: 10.5958/2231-5713.2019.00024.2         Access: Open Access Read More

Author(s): Brijesh Kumar Duvey, Rohit Goyel, Bharat Parashar, Denesh Verma, Hitesh Dhameja, Dharmesh Sharma

DOI:         Access: Open Access Read More

Author(s): Vikranti W. Koli, Manohar D. Kengar, Amruta B. Kamble, Suraj B. Kumbhar, Rahul P. Jadhav

DOI: 10.5958/2231-5713.2019.00022.9         Access: Open Access Read More

Author(s): Mounika P Siridevi, Hemant T Kumar, Srinivasa Y Rao, Vara Prasad K Rao

DOI: 10.5958/2231-5713.2019.00035.7         Access: Open Access Read More

Author(s): Abdul Saleem Mohammad, Swetha Devidi, Nikhat Fatima, Humera Badar, Syeda Saba Sulthana, Mohammad Akthar Sulthana, Nuha Rasheed

DOI:         Access: Open Access Read More

Author(s): Poonam R. Songire, Smita S. Aher, R. B. Saudagar

DOI: 10.5958/2231-5713.2015.00031.8         Access: Open Access Read More

Author(s): Jangam Payal R, Thombre Nilima A, Gaikwad Pallavi N

DOI: 10.5958/2231-5713.2017.00027.7         Access: Open Access Read More

Author(s): Jaya Preethi P., Karthikeyan E., Lohita M., Goutham Teja P., Subhash M., Shaheena P., Prashanth Y., Sai Nandhu K.

DOI: 10.5958/2231-5713.2015.00021.5         Access: Open Access Read More

Author(s): S. Kathirvel, R. Raju, B. Seethadevi, A. Suneetha, J. Pavani

DOI:         Access: Open Access Read More

Author(s): Vishwas R. Potphode, Amol S. Deshmukh, Vijay R. Mahajan

DOI:         Access: Open Access Read More

Author(s): Dhadde Gurunath S., Mali Hanmant S., Raut Indrayani D., Nitalikar Manoj M.

DOI: 10.52711/2231-5713.2021.00026         Access: Open Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags