Author(s):
Abhishek Kanugo, Aparajita Chakravarti
Email(s):
abhi.kanugo09@gmail.com , aparajitach27@gmail.com
DOI:
10.52711/2231-5713.2025.00044
Address:
Abhishek Kanugo, Aparajita Chakravarti
Survey No. 499, Plot No- 03, Mumbai - Agra National Hwy, Behind Gurudwara, Maharashtra. SVKM NMIMS SPTM, Shirpur.
*Corresponding Author
Published In:
Volume - 15,
Issue - 3,
Year - 2025
ABSTRACT:
The Hydrogels are the 3-D systems of cross-linked polymeric chains accomplished by absorbing water. The existence of polar functional groups such as SO3H, OH, NH2, COOH, CONH2, etc. enhances their benefits. These are versatile carriers for drug delivery and nanotechnology for offering great motorized power, biocompatibility, biodegradability, swelling behavior, and stimuli sensitivity. The wide variety of materials utilized in the fabrication of HGs is categorized into Polysaccharides, natural polymers, Polyamides, Polyphenols, Organic polyesters, and Polyanhydrides. Several conventional drug deliveries showed higher adverse effects and higher doses for eliciting the therapeutic response with frequent administration. These limitations are overcome by loading the drug in the matrix of hydrogel which provides the sustained controlled or targeted delivery. The significant role played by the HGs in Wound healing, tissue engineering, Cancer and Psoriasis treatment. They are also utilized in the cosmetic industry, contact lenses, and diabetic foot ulcer therapy.
Cite this article:
Abhishek Kanugo, Aparajita Chakravarti. Recent Advances in the Biomedical Applications of Hydrogels. Asian Journal of Pharmacy and Technology. 2025; 15(3):289-5. doi: 10.52711/2231-5713.2025.00044
Cite(Electronic):
Abhishek Kanugo, Aparajita Chakravarti. Recent Advances in the Biomedical Applications of Hydrogels. Asian Journal of Pharmacy and Technology. 2025; 15(3):289-5. doi: 10.52711/2231-5713.2025.00044 Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-3-12
5. REFERENCES:
1. De Lima CSA, Balogh TS, Varca JPRO, Varca GHC, Lugão AB, Camacho-Cruz LA, et al. An updated review of macro, micro, and nanostructured hydrogels for biomedical and pharmaceutical applications. Pharmaceutics. 2020; 12(10): 1–28.
2. Matole V, Digge P. a Brief Review on Hydrogel. Res J Top Cosmet Sci [Internet] 2022 [cited 2025 Jan 14]; 13(2): 99–100. Available from: https://rjtcsonline.com/AbstractView.aspx?PID=2022-13-2-8
3. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015; 6(2): 105–21.
4. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther [Internet] 2021 [cited 2023 Jan 31];6(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34916490/
5. Halake K, Birajdar M, Kim BS, Bae H, Lee CC, Kim YJ, et al. Recent application developments of water-soluble synthetic polymers. J Ind Eng Chem. 2014; 20(6): 3913–8.
6. Jain JP, Yenet Ayen W, Domb AJ, Kumar N. Biodegradable Polymers in Drug Delivery. Biodegrad Polym Clin Use Clin Dev. 2011;4(4):1–58.
7. Zaman M, Siddique W, Waheed S, Sarfraz RM, Mahmood A, Qureshi J, et al. Hydrogels, Their Applications and Polymers Used for Hydrogels: a Review. IJBPAS. 2015;4(12):4.
8. Andrade JD, editor. Hydrogels for Medical and Related Applications. 1976; 31.
9. B. V. V, F. R. S. pH Sensitive Hydrogel: A Review. Res J Pharm Dos Forms Technol [Internet] 2023 [cited 2025 Jan 14];15(3):189–97. Available from: https://rjpdft.com/AbstractView.aspx?PID=2023-15-3-7
10. Villalba-Rodríguez AM, Martínez-González S, Sosa-Hernández JE, Parra-Saldívar R, Bilal M, Iqbal HMN. Nanoclay/polymer-based hydrogels and enzyme-loaded nanostructures for wound healing applications. Gels. 2021; 7(2).
11. Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol. 2019; 121:633–42.
12. Tran NQ, Joung YK, Lih E, Park KD. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules. 2011; 12(8): 2872–80.
13. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, et al. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym. 2010; 82(4):1297–305.
14. Ladet SG, Tahiri K, Montembault AS, Domard AJ, Corvol MTM. Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors. Biomaterials. 2011; 32(23): 5354–64.
15. Yang J, Sun X, Zhang Y, Chen Y. The application of natural polymer–based hydrogels in tissue engineering. Hydrogels Based Nat Polym 2020; 273–307.
16. Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Mater 2019, Vol 12, Page 3323 2019; 12(20): 3323.
17. Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, et al. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019 131 2019; 13(1): 1–21.
18. Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. einstein (São Paulo) 2018;16(3): eRB4538.
19. Ashtari K, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, et al. Electrically conductive nanomaterials for cardiac tissue engineering. Adv Drug Deliv Rev. 2019; 144:162–79.
20. Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract. 2016; 2016(1).
21. Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J. 2015;36(34):2297–309.
22. Ucar B, Humpel C. Collagen for brain repair: Therapeutic perspectives. Neural Regen Res 2018;13(4):595–8.
23. Naik S, Vamshi Krishna T, Nayak A, Joshi M, Girish Pai K. Hydrogels for Cancer Drug Delivery. Res J Pharm Technol. [Internet] 2020 [cited 2025 Jan 14]; 13(8):4023–7. Available from: https://rjptonline.org/AbstractView.aspx?PID=2020-13-8-84
24. Chen X, Wang M, Yang X, Wang Y, Yu L, Sun J, et al. Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+ breast cancer after breast-conserving surgery. Theranostics. 2019;9(21):6080–98.
25. Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics. 2019; 11(9).
26. Anirudhan TS, Mohan AM. Novel pH switchable gelatin-based hydrogel for the controlled delivery of the anti cancer drug 5-fluorouracil. RSC Adv. 2014; 4(24): 12109–18.
27. Zhang Z. Research progress and clinical application of stimuli-responsive hydrogels in cervical cancer. Highlights Sci Eng Technol 2022; 14:188–98.
28. Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, et al. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med. 2022;7(3).
29. Jin Y, Zhang Z, Zou S, Li F, Chen H, Peng C, et al. A Novel c-MET-Targeting Antibody-Drug Conjugate for Pancreatic Cancer. Front Oncol 2021;11.
30. Peng M, Xu S, Zhang Y, Zhang L, Huang B, Fu S, et al. Thermosensitive injectable hydrogel enhances the antitumor effect of embelin in mouse hepatocellular carcinoma. J Pharm Sci. 2014; 103(3): 965–73.
31. Bae WK, Park MS, Lee JH, Hwang JE, Shim HJ, Cho SH, et al. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal metastasis of gastric cancer. Biomaterials. 2013; 34(4):1433–41.
32. Bilalis P, Skoulas D, Karatzas A, Marakis J, Stamogiannos A, Tsimblouli C, et al. Self-Healing pH- and Enzyme Stimuli-Responsive Hydrogels for Targeted Delivery of Gemcitabine to Treat Pancreatic Cancer. Biomacromolecules. 2018;19(9):3840–52.
33. Hashizume H, Ito T, Yagi H, Takigawa M, Kageyama H, Furukawa F, et al. Efficacy and safety of preprandial versus postprandial administration of low-dose cyclosporin microemulsion (Neoral) in patients with psoriasis vulgaris. J Dermatol. 2007;34(7):430–4.
34. Nagle A, Goyal AK, Kesarla R, Murthy RR. Efficacy study of vesicular gel containing methotrexate and menthol combination on parakeratotic rat skin model. http://dx.doi.org/103109/089821042010492476 2011;21(2):134–40.
35. Alves MP, Scarrone AL, Santos M, Pohlmann AR, Guterres SS. Human skin penetration and distribution of nimesulide from hydrophilic gels containing nanocarriers. Int J Pharm. 2007; 341(1–2): 215–20.
36. Kumar S, Jangir BL, Rao R. A new perspective for psoriasis: Dithranol nanosponge loaded hydrogels. Appl Surf Sci Adv. 2022; 12:100347.
37. Viyoch J, Sudedmark T, Srema W, Suwongkrua W. Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int J Cosmet Sci. 2005; 27(2): 89–99.
38. El-Leithy ES, Shaker DS, Ghorab MK, Abdel-Rashid RS. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium-chitosan microspheres for rectal administration. AAPS PharmSciTech. 2010; 11(4): 1695–702.
39. Nazeri MT, Javanbakht S, Shaabani A, Ghorbani M. 5-aminopyrazole-conjugated gelatin hydrogel: A controlled 5-fluorouracil delivery system for rectal administration. J Drug Deliv Sci Technol. 2020; 57:101669.
40. Akhlaq M, Azad AK, Ullah I, Nawaz A, Safdar M, Bhattacharya T, et al. Methotrexate-Loaded Gelatin and Polyvinyl Alcohol (Gel/PVA) Hydrogel as a pH-Sensitive Matrix. Polym. 2021, Vol 13, Page 2300 2021;13(14):2300.
41. Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv. 2014;11(6):901.
42. Chavda H, Chavada G, Patel J, Rangpadiya K, Patel C. Topical Vaginal Drug Delivery System Based on Superporous Hydrogel Hybrids. Protein Pept Lett. 2014;21(11):1176–84.
43. Perinelli DR, Campana R, Skouras A, Bonacucina G, Cespi M, Mastrotto F, et al. Chitosan Loaded into a Hydrogel Delivery System as a Strategy to Treat Vaginal Co-Infection. Pharmaceutics. 2018; 10(1).
44. Boddé HE, Van Aalten Eac, Junginger HE. Hydrogel patches for transdermal drug delivery; in-vivo water exchange and skin compatibility. J Pharm Pharmacol. 1989; 41(3): 152–5.
45. Gayakwad BP, Barhate SD, Jain MS. Citric Acid cross linked cellulose-based Hydrogel for Drug Delivery. Asian J Pharm Res. [Internet] 2017 [cited 2025 Jan 14];7(4):247–55. Available from: https://asianjpr.com/AbstractView.aspx?PID=2017-7-4-7
46. Hosny KM. Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech. 2009;10(4):1336–42.
47. Cao Y, Zhang C, Shen W, Cheng Z, Yu L (Lucy), Ping Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release. 2007; 120(3):186–94.
48. Genta I, Conti B, Perugini P, Pavanetto F, Spadaro A, Puglisi G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J Pharm Pharmacol. 1997;49(8):737–42.
49. Caló E, Khutoryanskiy V V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J. 2015; 65:252–67.
50. Silva D, de Sousa HC, Gil MH, Santos LF, Oom MS, Alvarez-Lorenzo C, et al. Moxifloxacin-imprinted silicone-based hydrogels as contact lens materials for extended drug release. Eur J Pharm Sci. 2021; 156:105591.
51. Silva D, de Sousa HC, Gil MH, Santos LF, Amaral RA, Saraiva JA, et al. Imprinted hydrogels with LbL coating for dual drug release from soft contact lenses materials. Mater Sci Eng C. 2021; 120:111687.
52. Raina N, Pahwa R, Bhattacharya J, Paul AK, Nissapatorn V, Pereira M de L, et al. Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics. 2022; 14(3): 574.
53. Bausch + Lomb Daily, Monthly, and Customized Contact Lenses.
54. Omidian H, Rocca JG, Park K. Advances in superporous hydrogels. J Control Release. 2005; 102(1):3–12.
55. Masuda F. Trends in a development of superabsorbent polymers for diapers. Superabsorbent Polym Sci Technol. 1994;88–98.
56. Rani ER, Ramadevi M, Usha AL. An Overview on Hydrophilic Three-Dimensional Networks: Hydrogels. Asian J Pharm Res. [Internet] 2021 [cited 2025 Jan 14]; 11(1): 23–8. Available from: https://asianjpr.com/AbstractView.aspx?PID=2021-11-1-6
57. Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020; 6(4): e03719.
58. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007; 6(2): 75–82.
59. Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. J Mater Sci Mater Med. 2020; 31(6).