REFERENCES:
1. McClellan P., Landis W. J., Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering, BioResearch open access, 2016,5(1):212-227.
2. Zeleny J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces, Phy. Rev., 1914;3(2):69.
3. Cooley J. F., Apparatus for electrically dispersing fluids. Google Patents, 1902.
4. Mirjalili M., Zohoori S., Review for application of electrospinning and electrospun nanofibers technology in textile industry, J: J. Nanostructure Chem., 2016,6(3):207-213.
5. Sun Y., et al., Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization, RSC Adv., 2019,9(44):25712-25729.
6. Formhals A., Artificial fiber construction, US 2109333 A, 1938.
7. Formhals A., Apparatus for producing artificial filaments from material such as cellulose acetate, Schreiber-Gastell, Richard, 1934.
8. Skinner J.L., et al., Electrospinning for nano-to mesoscale photonic structures, Nanophotonics, 2017,6(5):765.
9. Anton F., Artificial thread and method of producing same, Google Patents, 1940.
10. Formhals A., Production of artificial fibers from fiber forming liquids, US 2323025 A, 1943.
11. Hu X., et al., Electrospinning of polymeric nanofibers for drug delivery applications, J. control. release, 2014,185:12-21.
12. Taylor G. I., Disintegration of water drops in an electric field, Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964,280(1382):383-397.
13. Taylor G.I., Electrically driven jets, Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1969,313(1515):453-475.
14. Annis D., et al., An elastomeric vascular prosthesis, ASAIO Journal, 1978,24(1):209-214.
15. Reneker D.H., Yarin A.L., Electrospinning jets and polymer nanofibers, Polymer, 2008,49(10):2387-2425.
16. Lukas D., Sarkar A., Pokorny P., Self-organization of jets in electrospinning from free liquid surface: A generalized approach, J Appl. Phy., 2008,103 (8):084309.
17. Tan S., Huang X., Wu B., Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers, Polym. Int., 2007,56(11):1330-1339.
18. Doshi J., Reneker D.H., Electrospinning process and applications of electrospun fibers, J. electrost., 1995,35(2-3):151-160.
19. Nangare S., et al., Pharmaceutical applications of electrospinning, Ann. Pharm. Fr., 2020,78(1): 1-11.
20. Yu D-G., et al., Electrospun nanofiber-based drug delivery systems, Health, 2009,1(02):67-75.
21. Torres-Martínez E.J., et al., A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices, Curr. drug deliv., 2018,15(10):1360-7134.
22. Topuz F., Uyar T., Electrospinning of cyclodextrin functional nanofibers for drug delivery applications, Pharmaceutics, 2019,11(1):6.
23. Sill T.J., von Recum H.A., Electrospinning: applications in drug delivery and tissue engineering, Biomaterials, 2008,29(13):1989-2006.
24. Bhattarai R.S., et al., Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery, Pharmaceutics, 2019,11(1):5.
25. Park S., et al., Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication, Polym. Int., 2007,56(11):1361-1366.
26. Ye K., et al., Electrospun nanofibers for tissue engineering with drug loading and release, Pharmaceutics, 2019,11(4):182.
27. Reneker D.H., Chun I., Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 1996,7(3):216.
28. Lee K., et al., The change of bead morphology formed on electrospun polystyrene fibers, Polymer, 2003,44(14):4029-4034.
29. Uyar T., Besenbacher F., Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity, Polymer, 2008,49(24):5336-5343.
30. Villarreal-Gómez L.J., et al., Electrospinning as a powerful technique for biomedical applications: a critically selected survey, J. Biomater. Sci. Polym. Ed., 2016,27(2):157-176.
31. Persano L., et al., Industrial upscaling of electrospinning and applications of polymer nanofibers: a review, Macromolecular Materials and Engineering, 2013,298(5):504-520.
32. Shahriar S., et al., Electrospinning nanofibers for therapeutics delivery, Nanomaterials, 2019,9(4):532.
33. Schoolaert E., et al., Blend electrospinning of dye-functionalized chitosan and poly (ε-caprolactone): towards biocompatible pH-sensors, J. Mater. Chem. B., 2016,4(26):4507-4516.
34. Nikmaram N., et al., Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications, RSC Adv., 2017,7(46):28951-28964.
35. Yu D-G., et al., Linear drug release membrane prepared by a modified coaxial electrospinning process, J. Membr. Sci., 2013,428:150-156.
36. Kai D., Liow S. S., Loh X. J., Biodegradable polymers for electrospinning: towards biomedical applications, Mater. Sci. Eng. C., 2014,45:659-670.
37. Luo X., et al., Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation, Int. J. Pharm., 2012,425(1-2):19-28.
38. Gupta B., Revagade N., Hilborn J., Poly (lactic acid) fiber: An overview, Prog. Polym. Sci., 2007,32(4):455-482.
39. Esfahani H., Jose R., Ramakrishna S., Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications, Materials, 2017,10(11):1238.
40. Potrč T., et al., Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs, Eur. J. Pharm. Sc., 2015,75:101-113.
41. Subbiah T., et al., Electrospinning of nanofibers, J. Appl. Polym. Sci., 2005, 96(2):557-569.
42. Opanasopit P., et al., Electrospun poly (vinyl alcohol) fiber mats as carriers for extracts from the fruit hull of mangosteen, J. Cosmet. Sci., 2008,59(3):233-242.
43. Cleeton C., et al., Electrospun Nanofibers for Drug Delivery and Biosensing, ACS Biomater. Sci. Eng., 2019, 5(9):4183-4205.
44. Paneva D., et al., Antibacterial electrospun poly (ɛ-caprolactone)/ascorbyl palmitate nanofibrous materials, Int.J. Pharm., 2011,416(1):346-355.
45. Kebede T.G., Dube S., Nindi M.M., Fabrication and characterization of electrospun nanofibers from Moringa stenopetala seed protein, Mater. Res. Express., 2018,5(12):125015.
46. Kattamuri S.B.K., et al., Nanofibers in p harmaceuticals-a review, Am. J. PharmTech. Res., 2012,2(6):188-212.
47. Liu M., et al., Recent advances in electrospun for drug delivery purpose, J. Drug Target., 2019,27(3):270-282.
48. Reise M., et al., Release of metronidazole from electrospun poly (L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dent. Mater., 2012,28(2):179-188.
49. Kim K., et al., Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds, J. Control. Release., 2004,98(1):47-56.
50. Karthikeyan K., et al., Design and development of a topical dosage form for the convenient delivery of electrospun drug loaded nanofibers, RSC Adv., 2015,5(65):52420-52426.
51. Gao J., Huang G, et al., A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects, J. Biomater. Appl., 2016,31(2):241-249.
52. Kyzioł A., et al., Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride, Eur. Polym. J., 2017,96:350-360.
53. Barrientos I.J.H., et al., Fabrication and characterisation of drug-loaded electrospun polymeric nanofibers for controlled release in hernia repair, Int. J. Pharm., 2017,517(1-2):329-337.
54. Vaishali A., et al., In vitro evaluation of antimicrobial efficacy of 2% chlorhexidine loaded electrospun nanofibers, J. Pierre. Fauchard Acad. (India Section)., 2017,31(2-4):105-108.
55. Wright M.E., et al., Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: Effect on drug release and cell attachment, J. Control. Release., 2017,250:107-115.
56. Kuntzler S.G., Costa J.A.V., de Morais M.G., Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity, Int. J. Biol. Macromol., 2018,117:80080-80086.
57. Nalbandi B., Amiri S., Antibacterial activity of PVA-based nanofibers loaded with silver sulfadiazine/cyclodextrin nanocapsules, International Journal of Polymeric Materials and Polymeric Biomaterials, 2019,68(11):647-659.
58. Norouzi M., et al., Salinomycin-loaded Nanofibers for Glioblastoma Therapy, Sci. Rep., 2018,8(1):9377.
59. Arbade G.K., et al., Emblica officinalis-loaded poly (ε-caprolactone) electrospun nanofiber scaffold as potential antibacterial and anticancer deployable patch, New J. Chem., 2019,43(19):7427-7440.
60. Kegere J., Fabrication of poly (vinyl alcohol)/chitosan/bidens pilosa composite electrospun nanofibers with enhanced antibacterial activities, ACS Omega, 2019,4(5):8778-8785.
61. Dhairyasheel G., Adhikrao Y., Varsha G., Design and development of solid self-microemulsifying drug delivery of gefitinib. AJPTech., 2018,8(4):193-199.
62. Madhusudhanan J., Monika P., Monica K., Drug delivery using nanoparticle along with ssDNA. AJPTech., 2013,3(4):161-164.
63. Cao H., et al., RNA interference by nanofiber-based siRNA delivery system, J.Control. Release., 2010,144(2):203-212.
64. Javadian M., Rostamizadeh K., Danafar H., Preparation and characterization of electrospinning PEG-PLA nanofibers for sustained release of tamoxifen, Res. Pharm. Sci., 2012,7(5):235.
65. Qi R-l., et al., Controlled release of doxorubicin from electrospun MWCNTs/PLGA hybrid nanofibers, Chinese J. Polym. Sci., 2016,34(9):1047-1059.
66. Dai J., Doxorubicin-loaded PLA/pearl electrospun nanofibrous scaffold for drug delivery and tumor cell treatment, Mater. Res. Express., 2017, 4(7):075403.
67. Jun E., et al., Synergistic effect of a drug loaded electrospun patch and systemic chemotherapy in pancreatic cancer xenograft, Sci. Rep., 2017,7(1):12381.
68. Li H., et al., Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release, Rsc Adv., 2017,7(89):56550-56558.
69. Khashi M., Hassanajili S., Golestaneh S.I., Electrospun poly-lactic acid/chitosan nanofibers loaded with paclitaxel for coating of a prototype polymeric stent, Fiber. Polym., 2018,19(7):1444-1453.
70. Mamidi N., High throughput fabrication of curcumin embedded gelatin-polylactic acid forcespun fiber-aligned scaffolds for the controlled release of curcumin, MRS Commun., 2018,8(4):1395-1403.
71. Zhao J., et al., Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment., Int. J. Nanomed., 2019,14:3893.
72. Chen P., A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity In vitro , Eur. J. Pharm. Biopharm., 2010,76(3):413-420.
73. Sahu R.K., et al., Anti-inflammatory action of Ougeinia oojeinensis (Roxb.) Hochr. bark by HRBC membrane stabilization, Res. J. Pharm. Technol., 2008,1(1):57-8.
74. Kenawy E-R., A et al., Controlled release of ketoprofen from electrospun poly (vinyl alcohol) nanofibers, Mater. Sci. Eng. A., 2007,459(1-2):390-396.
75. Ngawhirunpat T., et al., Development of meloxicam-loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent, Pharm. Dev. Technol., 2009,14(1):73-82.
76. Meng Z., et al., Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system, Colloids and Surf. B: Biointerfaces., 2011,84(1):97-102.
77. Qi M., et al., Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol, Eur. J. Pharm. Biopharm., 2008,70(2):445-452.
78. Heshmati Z., Akhgari A., Makhmalzadeh B.S., Preparation and evaluation of electrospun indomethacin loaded Eudragit® S100 and Eudragit® RS100 nanofibers for colon-targeted drug delivery, Res. Pharma.Sci., 2012,7(5):245.
79. Nikkola L., et al., Fabrication of electrospun poly (D, L lactide-co-glycolide) 80/20 scaffolds loaded with diclofenac sodium for tissue engineering, Eur. J. Med. Res., 2015,20(1):54.
80. Malik R., et al., Diacerein-Loaded novel gastroretentive nanofiber system using PLLA: Development and In vitro characterization, Artif. cells Nanomed. B., 2016,44(3):928-936.
81. Laha A., et al., In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers, Biochem. Eng. J., 2016,105:481-488.
82. Maslakci N.N., et al., Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications, Polym. Bull., 2017,74(8):3283-3299.
83. Sultana N., Zainal A., Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties, Bull. Mater. Sci., 2016,39(2):337-343.
84. Vatankhah E., Rosmarinic acid‐loaded electrospun nanofibers: In vitro release kinetic study and bioactivity assessment, Engineering in Life Sciences, 2018,18(10):732-742.
85. Piccirillo G., et al., Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing, Sci. Rep., 2019,9(1):3446.
86. Chew S.Y., et al., Sustained release of proteins from electrospun biodegradable fibers, Biomacromolecules, 2005,6(4):2017-2024.
87. Zeng J., A et al., Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings, Biomacromolecules, 2005,6(3):1484-1488.
88. Ngawhirunpat T., et al., Fabrication of capsaicin loaded polyvinyl alcohol electrospun nanofibers, Adv. Mater. Res., 2011, 338:42-45..
89. Abid S., Development of nanofibers based neuropathic patch loaded with lidocaine to deal with nerve pain in burn patients, IOP Conf. Ser. Mater. Sci. Eng., 2018,414: 012019..
90. Abid S., et al., Acetaminophen loaded nanofibers as a potential contact layer for pain management in burn wounds, Mater. Res. Express., 2018,5(8):085017.
91. Chakraborty P, Kumar S, Dutta D, Gupta V. Role of antioxidants in common health diseases. Res. J. Pharm. Technol., 2009;2(2):238-44.
92. Julius A., Renugadevi K, Hemavathy V. Effect of Oxidative Stress in Essential Hypertension. Res. J. Pharm. Technol., 2014;7(12):1400-3.
93. Nangare S, et al., Development of novel freeze-dried mulberry leaves extract-based transfersomal gel, Turk. J. Pharm. Sci., 2019. (10.4274/tjps.98624)
94. Young I., Woodside J., Antioxidants in health and disease, J. Clin. Pathol., 2001,54(3):176-186.
95. Das T.T., Role of Antioxidants in Health and Diseases-A Review, Res. J. Pharm. Technol., 2015,8(8):1033-1037.
96. Fan L-P., Z et al., A novel skin-care product based on silk fibroin fabricated by electrospinning, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010. 11495042:1-4.( 10.1109/ICBBE.2010.5516470)
97. Aavani F., Khorshidi S., Karkhaneh A., A concise review on drug-loaded electrospun nanofibres as promising wound dressings, J. Med. Eng. Technol., 2019,43(1):38-47.
98. Chen L., et al.,. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PloS one, 2008,3(4):e1886.
99. Jannesari M., et al., Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int. I. Nanomedicine., 2011,6:993-1003.
100. Charernsriwilaiwat N., et al., Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing, Int. J. Pharm., 2012, 427(2):379-384.
101. Lin S., et al., Facile and green fabrication of electrospun poly (vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles, Int. J. Nanomedicine., 2014,9:3937.
102. Romano I., S et al., Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns, Biomed. Mater, 2016,11(4):041001.
103. Alavarse A.C,, et al., Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing, Mater. Sci.Eng. C., 2017, 77:271-281.
104. Rramaswamy R., Mani G., Jang H.T., Fabrication of buccal dissolving tetrahydro curcumin loaded polyvidone fiber mat: synthesis, characterization, and In vitro evaluations, J. Appl. Pharm. Sci., 2018,8(08):026-031.
105. Suryamathi M., et al., Tridax Procumbens extract loaded electrospun pcl nanofibers: a novel wound dressing material, Macromol. Res., 2019,27(1):55-60.
106. Bayraktar O., Silk fibroin nanofibers loaded with hydroxytyrosol from hydrolysis of oleuropein in olive leaf extract, 2018, 1(3-4) 90-98.a9.
107. Yuan T.T., F et al., Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications, Nanoscale Res. Lett., 2018,13(1):88.
108. Kurečič M., et al., A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules, RSC Adv., 2019,9(37):21288-21301.
109. Ajmal G., et al., Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing, Artif. Cell Nanomed. B., 2019,47(1):228-240.
110. Locilento D.A., Biocompatible and biodegradable electrospun nanofibrous membranes loaded with grape seed extract for wound dressing application, J. Nanomater., 2019,2019:11.
111. Wang M., Roy A.K., Webster T.J., Development of chitosan/poly (vinyl alcohol) electrospun nanofibers for infection related wound healing, Front. Physiol., 2017,7:683.
112. Illangakoon U.E., et al., Mebeverine‐loaded electrospun nanofibers: Physicochemical characterization and dissolution studies, J. Pharm. Sci., 2014,103(1):283-292.
113. Wadekar J.B., et al., Anticoagulant activity of Calotropis gigantea leaves, Res. J. Pharm. Technol., 2016,9(9):1493-1495.
114. Repanas A, Wolkers W, Gryshkov O, Müller M, Glasmacher B. PCL/PEG electrospun fibers as drug carriers for the controlled delivery of dipyridamole. J. Silico In vitro Pharmacol., 2015;1:1-10.
115. Tarke S., Shanmugasundaram P., Formulation and evaluation of fast dissolving tablets of antihypertensive drug, Res. J. Pharm. Technol., 2017,10(1):155-160.
116. Qureshi M., Formulation strategy for low absorption window antihypertensive agent, Indian J. Pharm. Sci., 2007,69(3):360-364.
117. Umekar M., Formulation development and evaluation of transdermal drug delivery system of antihypertensive drug, Res.J. Pharm. Technol. 2010,3(3):753-757.
118. Adeli E., Irbesartan‐loaded electrospun nanofibers‐based PVP K90 for the drug dissolution improvement: Fabrication, In vitro performance assessment, and In vivo evaluation, J. Appl. Polym. Sci., 2015, 132(27). 42212.
119. Wal P., Detailed review on traditionally used and potent sources showing anti-pyretic action, Res. J. Pharm. Technol., 2019,12(10):5107-5112.
120. Wang X., et al., Electrospun acetaminophen-loaded cellulose acetate nanofibers fabricated using an epoxy-coated spinneret, E-polymers, 2015,15(5):311-315.
121. Karuppannan C., Fabrication of progesterone-loaded nanofibers for the drug delivery applications in bovine, Nanoscale Res, Lett., 2017,12(1):116.
122. Vlachou M., et al., Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin, Curr. Drug Deliv., 2019,16(1):79-85.
123. Deore N.D., et al., Anti-Diabetic potential of a polyherbal formulation-A review, Res. J. Pharm. Technol., 2018,11(6):2625-2630.
124. Thipkaew C., Wattanathorn J., Muchimapura S., Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes, BioMed Res. Int., 2017,2017. (https://doi.org/10.1155/ 2017/2017493).
125. Škrlec K., et al., Development of electrospun nanofibers that enable high loading and long-term viability of probiotics, Eur. J. Pharm. Biopharm., 2019,136:108-119.