ABSTRACT:
Over the past ten years, the research and delivery of drugs has emerged as a rapidly expanding, highly capital-intensive, and demanding industry. This procedure is costly and time-consuming, and it has to deal with issues with rapid excretion, degradability, toxicity, low efficacy, biocompatibility, and low bioavailability. Nanomaterial are superior to conventional drug because they have remarkable qualities such as a high invasion rate, regulated, targeted, and gradual drug release, as well as easy receptor accessibility. Despite all of its importance, one of the main issues with different nanoparticles utilized as medication delivery systems is their toxicity. This review discusses the issue surrounding conventional drugs, the importance of nanomedicines in medication administration, and their potential for toxicity and also their future aspect that helps to improve health.
Cite this article:
Nawale Sejal Navnath, Nikam Unnati Sahebrao. Nanomedicines: Nano based Drug Delivery Systems Challenges and Future of nanomedicines. Asian Journal of Pharmacy and Technology. 2024; 14(2):135-0. doi: 10.52711/2231-5713.2024.00024
Cite(Electronic):
Nawale Sejal Navnath, Nikam Unnati Sahebrao. Nanomedicines: Nano based Drug Delivery Systems Challenges and Future of nanomedicines. Asian Journal of Pharmacy and Technology. 2024; 14(2):135-0. doi: 10.52711/2231-5713.2024.00024 Available on: https://ajptonline.com/AbstractView.aspx?PID=2024-14-2-8
REFERENCES:
1. M. Srinivasarao and P. S. Low, “Ligand-Targeted Drug Delivery,” Chem. Rev., vol. 117, no. 19, pp. 12133–12164, 2017.
2. www.drugs.com, “Inactive Ingredients,” 2020. [Online]. Available: https://www.drugs.com/inactive/. [Accessed: 25-Mar-2020].
3. R. Santos et al., “A comprehensive map of molecular drug targets,” Nat. Rev. Drug Discov., vol. 16, no. 1, pp. 19–34, 2016.
4. A. Sofowora, E. Ogunbodede, A. Onayade, and C. Dentistry, “The Role and place of medicinal plants in the strategies for disease”, Afr J Tradit Complement Altern Med; vol. 10, pp. 210–229, 2013.
5. D. M. Teleanu, C. Chircov, A. M. Grumezescu, and R. I. Teleanu, “Neuronanomedicine: An Up-to-Date Overview,” Pharmaceutics, Vol. 11, no. 101, pp. 1–23, 2019.
6. Petros, R. A., and DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic Applications. Nature reviews Drug Discovery, 9(8), 615-627.
7. Roger, E., Lagarce, F., Garcion, E., and Benoit, J. P. (2010). Biopharmaceutical parameters to Consider in order to alter the fate Of nanocarriers after oral delivery. Nanomedicine, 5(2), 287-306.
8. Bur, M., Henning, A., Hein, S., Schneider, M., and Lehr, C. M. (2009). Inhalative nanomedicine—Opportunities and challenges. Inhalation Toxicology, 21(sup1), 137-143.
9. Irvine, D. J., and Dane, E. L. (2020). Enhancing cancer immunotherapy with nanomedicine. Nature Reviews Immunology, 1-14.
10. Hafner, A., Lovrić, J., Lakoš, G. P., and Pepić, I. (2014). Nanotherapeutics In the EU: an overview on current state and future directions. International Journal of nanomedicine, 9, 1005.
11. Prasad, M., Lambe, U. P., Brar, B., Shah, I., Manimegalai, J., Ranjan, K., … and Iqbal, H. M. (2018). Nanotherapeutics: an insight into Healthcare and multi-dimensional Applications in medical sector of The modern world. Biomedicine and Pharmacotherapy, 97, 1521-1537.
12. Panyam, J., and Labhasetwar, V. (2003). Biodegradable nanoparticles For drug and gene delivery to cells and Tissue. Advanced drug delivery reviews, 55(3), 329-347.
13. Zhang, Z., Tsai, P. C., Ramezanli, T., and Michniak-Kohn, B. B. (2013). Polymeric nanoparticles-based topical Delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine And Nanobiotechnology, 5(3), 205-218.
14. Müller, R. H., Mäder, K., and Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery–a Review of the state of the art. European journal of pharmaceutics and Biopharmaceutics, 50(1), 161-177.
15. Jores, K., Mehnert, W., and Mäder, K. (2003). Physicochemical investigations On solid lipid nanoparticles and on Oil-loaded solid lipid nanoparticles: a Nuclear magnetic resonance and electron Spin resonance study. Pharmaceutical Research, 20(8), 1274-1283.
16. Shazly, G. A. (2017). Ciprofloxacin Controlled-solid lipid nanoparticles: Characterization, in vitro release, and Antibacterial activity assessment. BioMed research international, 2017.
17. Pinto, J. F., and Müller, R. H. (1999). Pellets as carriers of solid Lipid nanoparticles (SLN) for oral Administration of drugs. Pharmazie, 54(7), 506-509.
18. Dingler, A., Blum, R. P., Niehus, H., Muller, R. H., and Gohla, S. (1999). Solid lipid nanoparticles (SLNTM/LipopearlsTM) a pharmaceutical and Cosmetic carrier for the application of Vitamin E in dermal products. Journal of Microencapsulation, 16(6), 751-767.
19. Videira, M. A., Almeida, A. J., Botelho, M. F., Santos, A. C., Gomes, C., and De Lima, J. J. P. (1999, September). Lymphatic uptake of radiolabelled solid Lipid nanoparticles administered by the Pulmonary route. In European Journal Of Nuclear Medicine (Vol. 26, No. 9, pp. 1168-1168).
20. Cavalli, R., Gasco, M. R., Chetoni, P., Burgalassi, S., and Saettone, M. F. (2002). Solid lipid nanoparticles (SLN) as ocular delivery system for Tobramycin. International journal of Pharmaceutics, 238(1-2), 241-245.
21. Sznitowska, M., Gajewska, M., Janicki, S., Radwanska, A., and Lukowski, G. (2001). Bioavailability of diazepam From aqueous-organic solution, Submicron emulsion and solid lipid Nanoparticles after rectal administration In rabbits. European journal of Pharmaceutics and biopharmaceutics, 52(2), 159-163.
22. Souto, E. B., and Müller, R. H. (2008). Cosmetic features and applications of Lipid nanoparticles (SLN®, NLC®). International Journal of Cosmetic Science, 30(3), 157-165.
23. Patri, A. K., Majoros, I. J., and Baker Jr, J. R. (2002). Dendritic polymer Macromolecular carriers for drug Delivery. Current opinion in chemical Biology, 6(4), 466-471.
24. Zhang, B., Wang, K., Si, J., Sui, M., and Shen, Y. (2014). Charge-Reversal Polymers for Biodelivery. Bioinspired And biomimetic polymer systems for drug And gene delivery, 223.
25. Manikkath, J., Hegde, A. R., Kalthur, G., Parekh, H. S., and Mutalik, S. (2017). Influence of peptide dendrimers and Sonophoresis on the transdermal delivery Of ketoprofen. International Journal of Pharmaceutics, 521(1-2), 110-119.
26. Rosso, A., Lollo, G., Chevalier, Y., Troung, N., Bordes, C., Bourgeois, S., … and Briançon, S. (2020). Development And structural characterization of A novel nanoemulsion for oral drug Delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593, 124614.
27. Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., and Chourasia, M. K. (254. Pandit A, Zeugolis DI. Twenty-fve years of nano-bio-materials: have we revolutionized healthcare? Fut Med. 2016;11(9):985–7.). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of controlled release, 252, 28-49.
28. Gao, F., Zhang, Z., Bu, H., Huang, Y., Gao, Z., Shen, J., … and Li, Y. (2011). Nanoemulsion improves the oral Absorption of candesartan cilexetil in Rats: performance and mechanism. Journal of controlled release, 149(2), 168-174.
29. Soni, G., and Yadav, K. S. (2016). Nanogels as potential Nanomedicine carrier for treatment of Cancer: A mini review of the state of the Art. Saudi Pharmaceutical Journal, 24(2), 133-139.
30. Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J. X., and Kissel, T. (2000). Biodegradable nanoparticles For oral delivery of peptides: is There a role for polymers to affect Mucosal uptake?. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 147-160.
31. Oh, J. K., Drumright, R., Siegwart, D.J., and Matyjaszewski, K. (2008). The Development of microgels/nanogels for Drug delivery applications. Progress in Polymer Science, 33(4), 448-477.
32. Jain, A., Prajapati, S. K., Kumari, A., Mody, N., and Bajpai, M. (2020). Engineered nanosponges as versatile Biodegradable carriers: An insight. Journal of Drug Delivery Science and Technology, 101643.
33. Tannous, M., Trotta, F., and Cavalli, R. (2020). Nanosponges for Combination drug therapy: state-of-theart and future directions.
34. Ananya, K. V., Preethi, S., Patil, A.B., and Gowda, D. V. (2020). Recent Review on Nano sponge. International Journal of Research in Pharmaceutical Sciences, 11(1), 1085-1096.
35. Sadhasivam, J., Sugumaran, A., and Narayanaswamy, D. (2020). Nano Sponges: A Potential Drug Delivery Approach. Research Journal of Pharmacy And Technology, 13(7), 3442-3448.
36. Ananya, K. V., Preethi, S., Patil, A.B., and Gowda, D. V. (2020). Recent Review on Nano sponge. International Journal of Research in Pharmaceutical Sciences, 11(1), 1085-1096.
37. Argenziano, M., Foglietta, F., Canaparo, R., Spagnolo, R., Della Pepa, C., Caldera, F., … and Cavalli, R. (2020). Biological Effect Evaluation of Glutathione-Responsive CyclodextrinBased Nanosponges: 2D and 3D Studies. Molecules, 25(12), 2775.
38. Bassas-Galia, M., Follonier, S., Pusnik, M., and Zinn, M. (2017). Natural Polymers: A source of inspiration. In Bioresorbable polymers for biomedical Applications (pp. 31-64). Woodhead Publishing.
39. Adams D. J. (2012). The Valley of Death in anticancer drug development: Reassessment. Trends in pharmacological Sciences, 33(4), 173-180.
40. Sun, Q ., Zhou, Z., Qiu, N., and Shen, Y. (2017). Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Advanced materials (Deerfield Beach, Fla.), 29(14), 10.1002/Adma.201606628.
41. Zamboni, W. C., Torchilin, V., Patri, A. K., Hrkach, J., Stern, S., Lee, R., Nel, A., Panaro, N. J., and Grodzinski, P. (2012). Best practices in cancer Nanotechnology: perspective from NCI nanotechnology alliance. Clinical Cancer research: an official journal of The American Association for Cancer Research, 18(12), 3229-3241.
42. Dancy, J. G., Wadajkar, A. S., Connolly, N. P., Galisteo, R., Ames, H. M., Peng, S., … and Kim, A. J. (2020). Decreased nonspecific adhesivity, Receptor-targeted therapeutic Nanoparticles for primary and Metastatic breast cancer. Science Advances, 6(3), eaax3931.
43. Martin, J. D., Cabral, H., Stylianopoulos, T., and Jain, R. K. (2020). Improving cancer immunotherapy using Nanomedicines: Progress, opportunities and challenges. Nature Reviews Clinical Oncology, 1-16.
44. Bregoli, L., Movia, D., GaviganImedio, J. D., Lysaght, J., Reynolds, J., and Prina-Mello, A. (2016). Nanomedicine Applied to translational oncology: A Future perspective on cancer treatment. Nanomedicine: nanotechnology, biology, And medicine, 12(1), 81-103.
45. Eetezadi, S., Ekdawi, S. N., and Allen, C. (2015). The challenges facing Block copolymer micelles for cancer Therapy: In vivo barriers and clinical Translation. Advanced drug delivery Reviews, 91, 7-22.
46. Gabizon, A., Bradbury, M., Prabhakar, U., Zamboni, W., Libutti, S., and Grodzinski, P. (2014). Cancer Nanomedicines: closing the translational Gap. Lancet (London, England), 384(9961), 2175-2176.
47. Pandit A, Zeugolis DI. Twenty-five years of nano-bio-materials: have we Revolutionized healthcare? Fut Med. 2016;11(9):985–7.