Author(s):
Dilip O. Morani, Bhushan Rane
Email(s):
dilip22morani@gmail.com
DOI:
10.52711/2231-5713.2024.00043
Address:
Dilip O. Morani1*, Bhushan Rane2
1Asst. Professor, Department of Pharmaceutics, Bombay Institute of Pharmacy and Research, Dombivli - 421201, Maharashtra, India.
2Department of Pharmaceutics, Shri D.D. Vispute College of Pharmacy and Research Center, Devad-Vichumbe, New Panvel - 410206, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 14,
Issue - 3,
Year - 2024
ABSTRACT:
In early-stage cancer, chemotherapy, radiotherapy or surgery is a common treatment. However, monotherapy results in medicine struggle besides later numerous series of treatment; it loses its effect in patients. The multimodal approach is an elementary principle for treating maximum tumor categories by confirmed existence benefits. The multidisciplinary approach comprises multimodality action and surgery followed by radiotherapy with or lacking chemotherapy or simultaneous chemoradiotherapy is mandatory for diverse forms of tumor. In all pathological states including cancer, combination approach is considered as future of therapeutics. Thus, grouping of multidrug treatment is utmost frequently utilized strategy in cancer treatment. While combining cancer treatment together with anticancer drugs overcomes the medicine fighting as well as provides synergistic result displaying delayed existence for patients. The drive of present review article is to 1) climax necessity and importance of multidisciplinary method in cancer treatment; 2) discuss part of radiotherapy, chemotherapy, immunotherapy and their combinations.
Cite this article:
Dilip O. Morani, Bhushan Rane. Review on different Multimodal Approaches for Multifactorial Cancer Disease. Asian Journal of Pharmacy and Technology. 2024; 14(3):264-0. doi: 10.52711/2231-5713.2024.00043
Cite(Electronic):
Dilip O. Morani, Bhushan Rane. Review on different Multimodal Approaches for Multifactorial Cancer Disease. Asian Journal of Pharmacy and Technology. 2024; 14(3):264-0. doi: 10.52711/2231-5713.2024.00043 Available on: https://ajptonline.com/AbstractView.aspx?PID=2024-14-3-12
REFERENCES:
1. Morley JE, Anker SD, Von Haehling S. Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology – update 2014. J Cachexia Sarcopenia Muscle. 2014; 5:253–259. doi: 10.1007/s13539-014-0161-y.
2. Von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle 2016; 7:507–509H. Mcilwain, Nature. 1943, 151, 270. doi: 10.1002/jcsm.12167.
3. Fearon KC, Voss AC, Hustead DS. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr 2006; 83:1345–1350. doi: 10.1093/ajcn/83.6.1345.
4. Bachmann J, Heiligensetzer M, Krakowski-Roosen H, et al. Cachexia worsens prognosis in patients with resectable pancreatic cancer. J Gastrointest Surg. 2008; 12:1193–1201. doi: 10.1007/s11605-008-0505-z.
5. Fuks A. The military metaphors of modern medicine. In: Li Z, Long TL, editors. The meaning management challenge. Volume 124 of the Probing the Boundaries series ‘Health, Illness and Disease’ [eBook]. Oxford, UK: Inter-Disciplinary Press. 2010. pp. 57–68. ISBN: 978-1-84888-023-8.
6. http://www.who.int/cancer/en/; http://uicc.org/; http://www.iarc.fr/ [Accessed August 2009].
7. Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012; 16:153–166. doi: 10.1016/j.cmet.2012.06.011.
8. Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract. 2005; 20:369–376. doi: 10.1177/0115426505020004369.
9. Lawson DH, Richmond A, Nixon DW, Rudman D. Metabolic approaches to cancer cachexia. Annu Rev Nutr. 1982; 2:277–301. doi: 10.1146/annurev.nu.02.070182.001425.
10. Ezeoke CC, Morley JE. Pathophysiology of anorexia in the cancer cachexia syndrome. J Cachexia Sarcopenia Muscle 2015; 6:287–302. doi: 10.1002/jcsm.12059.
11. Bruera E. ABC of palliative care. Anorexia, cachexia, and nutrition. BMJ. 1997; 315:1219–1222. doi: 10.1136/bmj.315.7117.1219.
12. Teunissen SC, Wesker W, Kruitwagen C, et al. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage. 2007; 34:94–104. doi: 10.1016/j.jpainsymman.2006.10.015.
13. Fearon, K. C. (2008). Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur. J. Cancer. 44, 1124–1132. doi: 10.1016/j.ejca.2008.02.033.
14. Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E., Fainsinger, R. L., et al. (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495. doi: 10.1016/S1470- 2045(10)70218-7.
15. Fearon, K. C. (2012). The 2011 ESPEN Arvid Wretlind lecture: cancer cachexia: the potential impact of translational research on patient-focused outcomes. Clin. Nutr. 31, 577–582. doi: 10.1016/j.clnu.2012.06.012.
16. Moses AW, Slater C, Preston T, et al. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n)3 fatty acids. Br J Cancer. 2004; 90:996–1002. doi: 10.1038/sj.bjc.6601620.
17. Reeds PJ, Fjeld CR, Jahoor F. Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J Nutr. 1994; 124:906–10. doi: 10.1093/JN/124.6.906.
18. Wigmore, S. J., Plester, C. E., Ross, J. A., and Fearon, K. C. (1997b). Contribution of anorexia and hypermetabolism to weight loss in anicteric patients with pancreatic cancer. Br. J. Surg. 84, 196–197. doi: 10.1002/bjs.18008 40214.
19. Deutsch, J., and Kolhouse, J. F. (2004). Assessment of gastrointestinal function and response to megesterol acetate in subjects with gastrointestinal cancers and weight loss. Support. Care Cancer. 12, 503–510. doi: 10.1007/s00520-004-0615-4.
20. Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2015. Toronto, ON: Canadian Cancer Society. 2015.
21. Cao L, Zhou Y, Zhai B, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011; 11:71. doi: 10.1186/1471-230X-11-71.
22. Li Y, Rogoff HA, Keates S, et al. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A. 2015;112(6):1839–1844. doi: 10.1073/pnas.1424171112.
23. Prieto PA, Reuben A, Cooper ZA and Wargo JA: Targeted Therapies Combined with Immune Checkpoint Therapy. Cancer J. 22: 138 146, 2016. doi: 10.1097/PPO.0000000000000182.
24. Zhang Z, Guo Y and Feng SS: Nanoimmunotherapy: Application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells. Nanomedicine (Lond). 7: 1-4, 2012. doi: 10.2217/nnm.11.171.
25. Rosenberg SA, Yang JC and Restifo NP: Cancer immunotherapy: Moving beyond current vaccines. Nat Med. 10: 909 915, 2004. doi: 10.1038/nm1100.
26. Melero I, Grimaldi AM, Perez Gracia JL and Ascierto PA: Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res. 19: 997 1008, 2013. doi: 10.1158/1078-0432.CCR-12-2214.
27. Mellman I, Coukos G and Dranoff G: Cancer immunotherapy comes of age. Nature. 480: 480 489, 2011. doi: 10.1038/nature10673.
28. Ramos-Suzarte M, Lorenzo-Luaces P, Lazo NG, et al: Treatment of malignant, non-resectable, epithelial origin esophageal tumours with the humanized anti-epidermal growth factor antibody nimotuzumab combined with radiation therapy and chemotherapy. Cancer Biol Ther. 13: 600-605, 2012. doi: 10.4161/cbt.19849.
29. Dong JM, Zhao SG, Huang GY and Liu Q: NADPH oxidase-mediated generation of reactive oxygen species is critically required for survival of undifferentiated human promyelocytic leukemia cell line HL 60. Free Radic Res. 38: 629 637, 2004. doi: 10.1080/10715760410001694053.
30. Oleson JR: Eugene Robertson Special Lecture. Hyperthermia from the clinic to the laboratory: A hypothesis. Int J Hyperthermia. 11: 315 322, 1995. doi: 10.3109/02656739509022467.
31. Vujaskovic Z and Song CW: Physiological mechanisms underlying heat induced radiosensitization. Int J Hyperthermia. 20: 163 174, 2004. doi: 10.1080/02656730310001619514.
32. Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A, et al: Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano. 5: 1122-1140, 2011.
33. Vujaskovic Z, Kim DW, Jones E, Lan L, McCall L, Dewhirst MW, Craciunescu O, Stauffer P, Liotcheva V, Betof A and Blackwell K: A phase I/II study of neoadjuvant liposomal doxorubicin, paclitaxel, and hyperthermia in locally advanced breast cancer. Int J Hyperthermia. 26: 514 521, 2010. doi: 10.3109/02656731003639364.
34. Issels RD: Hyperthermia adds to chemotherapy. Eur J Cancer. 44: 2546-2554, 2008. doi: 10.1016/j.ejca.2008.07.038.
35. Lindquist S and Craig EA: The heat-shock proteins. Annu Rev Genet. 22: 631 677, 1988. doi: 10.1146/annurev.ge.22.120188.003215.
36. Kumar CS and Mohammad F: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 63: 789 808, 2011. doi: 10.1016/j.addr.2011.03.008.
37. Boisselier E and Astruc D: Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 38: 1759 1782, 2009. doi: 10.1039/b806051g.
38. Kerbel R and Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2: 727 739, 2002. doi: 10.1038/nrc905.
39. Folkman J: Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov. 6: 273-286, 2007. doi: 10.1038/nrd2115.
40. Folkman J: Angiogenesis. Annu Rev Med. 57: 1 18, 2006. doi: 10.1146/annurev.med.57.121304.131306.
41. Kamrava M, Bernstein MB, Camphausen K and Hodge JW: Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: The Three Musketeers or just another quixotic combination? Mol Biosyst. 5: 1262 1270, 2009. doi: 10.1039/b911313b.
42. Fabi A, Russillo M, Ferretti G, Metro G, Nisticò C, Papaldo P, De Vita F, D'Auria G, Vidiri A, Giannarelli D and Cognetti F: Maintenance bevacizumab beyond first line paclitaxel plus beva- cizumab in patients with Her2-negative hormone receptor-positive metastatic breast cancer: Efficacy in combination with hormonal therapy. BMC Cancer. 12: 482, 2012.
43. Dolmans DEJGJ, Fukumura D and Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer. 3: 380-387, 2003. doi: 10.1038/nrc1071.
44. Baldea I and Filip AG: Photodynamic therapy in melanoma - an update. J Physiol Pharmacol. 63: 109 118, 2012.
45. Zuluaga MF and Lange N: Combination of photodynamic therapy with anti-cancer agents. Curr Med Chem. 15: 1655-1673, 2008. doi: 10.2174/092986708784872401.
46. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al: Photodynamic therapy of cancer: An update. CA Cancer J Clin. 61: 250 281, 2011. doi: 10.3322/caac.20114.
47. Thomas CE, Ehrhardt A and Kay MA: Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 4: 346-358, 2003. doi: 10.1038/nrg1066.
48. McCormick F: Cancer gene therapy: Fringe or cutting edge? Nat Rev Cancer. 1: 130-141, 2001. doi: 10.1038/35101008.
49. Ginn SL, Alexander IE, Edelstein ML, Abedi MR and Wixon J: Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 15: 65 77, 2013. doi: 10.1002/jgm.2698.
50. Davidson BL and McCray PB Jr: Current prospects for RNA interference based therapies. Nat Rev Genet. 12: 329 340, 2011. doi: 10.1038/nrg2968.
51. Rachel S. Riley and Emily S. Day. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jul; 9(4): 10.1002/wnan.1449. doi: 10.1002/wnan.1449.
52. Guo L, Yan D, Yang D, Li Y, Wang X, Zalewski O. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano. 2015, 8:5670–5681. doi: 10.1021/nn5002112.
53. Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, Umeyama T, Imahori H, Hashida M. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release. 2014, 173:58–66. doi: 10.1016/j.jconrel.2013.10.039.
54. Li M, Teh C, Ang CY, Tan SY, Luo Z, Qu Q, Zhang Y, Korzh V, Zhao Y. Near-infrared lightabsorptive stealth liposomes for localized photothermal ablation of tumors combined with chemotherapy. Adv Funct Mater. 2015, 25:5602–5610.
55. Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C. 2009, 113:12090–12094.
56. Wang Y, Black K, Leuhmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P, et al. A comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013, 7:2068–2077. doi: 10.1021/nn304332s.
57. Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, et al. Size dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012, 6:4483–4493. doi: 10.1021/nn301282m.
58. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9:1909–1915. doi: 10.1021/nl900031y.
59. Cappello P and Novelli F: Next generation of cancer immunotherapy calls for combination. Oncoscience. 31: 19-20, 2017. doi: 10.18632/oncoscience.343.
60. Akhilesh Gupta. Plazomicin: A step toward next generation aminoglycosides. Review. Asian J. Res. Pharm. Sci. 2017; 7(3):173-180.
61. Made Krisna Adi Jaya, Putu Rika Veryanti, I Gusti Agung Ayu Kartika. Effectivity Evaluation of Bisoprolol as Additional Hypertension Therapy in Geriatrics with Type 2 Diabetes Mellitus while ongoing with Dual Oral Anti-Hypertension Agent: A Cohort Study. Research Journal of Pharmacy and Technology. 2021; 14(9):4691-6.
62. Pramodh. B, M. Ashok Kumar, P. Shanmugasundaram. A Prospective Observational Study on Drug use Evaluation of Antiplatelet Agents in Tertiary Care Hospital. Research J. Pharm. and Tech. 2017; 10(12): 4328-4332.
63. Siddhesh Gosavi, Pranali Joshi, Vidur Bhogate, Sairaj Gawade, Pooja Sangelkar, Shraddha Kanekar. Comparative Study on Treatment of Rheumatoid Arthritis. Asian J. Pharm. Tech. 2021; 11(1):5-12.
64. Akhilesh Gupta, Swati Rawat, Prabhanshu Gupta. Pharmacoepidemiology of Severe Systemic Infection and Need of Netilmicin Monotherapy or Combination Therapy: Systemic Review and Meta- Analysis. Res. J. Pharm. Dosage Form. & Tech. 2017; 9(3): 101-108.
65. Garach Bhavikkumar D. The rationale of use of combination therapy in hypertensive patients. Research J. Pharmacology and Pharmacodynamics. 2013; 5(1): 19-26.
66. Diksha Sharma, Dinesh Kumar Mehta, Karun Bhatti, Rina Das, Ram Mohan Chidurala. Amlodipine And Atenolol: Combination Therapy Versus Monotherapy In Reducing Blood Pressure - A Focus On Safety And Efficacy. Research J. Pharm. and Tech. 2020; 13(6): 3007-3013.
67. Harmeet Kaur, Arvinder Kaur, Pankaj Kumar Prashar, Anamika Gautam, Ankita Sood, Sachin Kumar Singh, Monica Gulati, Narendra Kumar Pandey, Bimlesh Kumar. Clinical Impact of Combination Therapy in Diabetic Neuropathy and Nephropathy. Research Journal of Pharmacy and Technology. 2021; 14(6): 3471-0.
68. Rohan Mishra, Aneesh T P. Combination Vs. Multi-target drugs: The Clash of the titans in the arena of drug discovery; An overview and in silico evaluation. Research Journal of Pharmacy and Technology. 2021; 14(8): 4455-2.