Author(s): Waghamare Suresh, Annsaheb Kudhekar

Email(s): waghasuresh@gmail.com

DOI: 10.52711/2231-5713.2025.00056   

Address: Waghamare Suresh1*, Annsaheb Kudhekar2
1NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan - 303121, India.
2Nandkumar Shinde College of Pharmacy, At. Aghur, Post. Rotegaon, Tal. Vaijapur, Dist: - Chh. Sambhajinagar, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 4,     Year - 2025


ABSTRACT:
Bioactive hydrogels have emerged as paradigm-changing platforms in regenerative medicine, wherein the paradigm has moved from structural, inert scaffolds to dynamic, smart tissue architects. Emulating the extracellular matrix (ECM) and incorporating biochemical, mechanical, and stimuli-responsive signals, these hydrogels actively direct cellular behavior, advance tissue regeneration, and choreograph intricate healing processes. Advances in material chemistry, nanotechnology, and bioprinting have made it possible to design hydrogels with programmed degradation, controlled release of bioactives, and adaptive remodeling functions. These systems are capable of recruiting endogenous stem cells, modulating immune responses, and activating angiogenesis or neurogenesis, providing unprecedented potential in repairing skin, musculoskeletal, cardiovascular, and neural tissues. Translational challenges persist, however, such as scalability, long-term stability, and regulatory approval pathways. This review emphasizes the principles of design, biological processes, and clinical uses of bioactive hydrogels, with a focus on their development as intelligent biomaterials that not only facilitate but also guide the repair of tissue. Lastly, we discuss future directions for combining synthetic biology, bioelectronics, and artificial intelligence in the development of next-generation regenerative platforms for personalized healing.


Cite this article:
Waghamare Suresh, Annsaheb Kudhekar. Healing by Design: Bioactive Hydrogels as Intelligent Tissue Architects. Asian Journal of Pharmacy and Technology. 2025; 15(4):385-4. doi: 10.52711/2231-5713.2025.00056

Cite(Electronic):
Waghamare Suresh, Annsaheb Kudhekar. Healing by Design: Bioactive Hydrogels as Intelligent Tissue Architects. Asian Journal of Pharmacy and Technology. 2025; 15(4):385-4. doi: 10.52711/2231-5713.2025.00056   Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-4-9


10. REFERENCES:
1.    Gharat JS, Dalvi YV. Compressive Review on Hydrogel. Asian Jour Pharm and Technol [Internet]. 2018 [cited 2025 Aug 19]; 8(3): 172. Available from: http://www.indianjournals.com/ijor.aspx?target=ijor:ajptandvolume=8andissue=3andarticle=011
2.    R Choi J. Applications of biomaterials in regenerative medicine. J Stem Cell Res Med [Internet]. 2019 [cited 2025 Aug 15];4(1). Available from: https://www.oatext.com/applications-of-biomaterials-in-regenerative-medicine.php
3.    Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, et al. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol [Internet]. 2020 Mar 24 [cited 2025 Aug 15]; 8:83. Available from: https://www.frontiersin.org/article/10.3389/fbioe.2020.00083/full
4.    Zhang H, Lin X, Cao X, Wang Y, Wang J, Zhao Y. Developing natural polymers for skin wound healing. Bioactive Materials [Internet]. 2024 Mar [cited 2025 Aug 15]; 33:355–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X23003614
5.    Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, et al. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol [Internet]. 2021 Mar 25 [cited 2025 Aug 15]; 9:603444. Available from: https://www.frontiersin.org/articles/10.3389/fbioe.2021.603444/full
6.    Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthcare Materials [Internet]. 2015 Jun [cited 2025 Aug 15]; 4(9): 1268–85. Available from: https://onlinelibrary.wiley.com/doi/10.1002/adhm.201400760
7.    El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, et al. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Materials Today Bio [Internet]. 2022 Jan [cited 2025 Aug 15]; 13:100186. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590006421000946
8.    Taneja H, Salodkar SM, Singh Parmar A, Chaudhary S. Hydrogel based 3D printing: Bio ink for tissue engineering. Journal of Molecular Liquids [Internet]. 2022 Dec [cited 2025 Aug 15]; 367:120390. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167732222019298
9.    El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science and Practice [Internet]. 2013 Sep [cited 2025 Aug 15]; 2013(3): 38. Available from: http://www.qscience.com/doi/abs/10.5339/gcsp.2013.38
10.    Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels [Internet]. 2023 Jun 27 [cited 2025 Aug 15]; 9(7): 523. Available from: https://www.mdpi.com/2310-2861/9/7/523
11.    Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Sig Transduct Target Ther [Internet]. 2024 Jul 1 [cited 2025 Aug 15]; 9(1):166. Available from: https://www.nature.com/articles/s41392-024-01852-x
12.    Mohapatra S, Mirza MohdA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, et al. Biomedical Application, Patent Repository, Clinical Trial and Regulatory Updates on Hydrogel: An Extensive Review. Gels [Internet]. 2021 Nov 12 [cited 2025 Aug 15];7(4):207. Available from: https://www.mdpi.com/2310-2861/7/4/207
13.    Aizarna-Lopetegui U, Bittinger SC, Álvarez N, Henriksen-Lacey M, Jimenez De Aberasturi D. Stimuli-responsive hybrid materials for 4D in vitro tissue models. Materials Today Bio [Internet]. 2025 Aug [cited 2025 Aug 15]; 33:102035. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590006425006052
14.    Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. Materials [Internet]. 2024 Sep 29 [cited 2025 Aug 15];17(19):4792. Available from: https://www.mdpi.com/1996-1944/17/19/4792
15.    Zhao E, Tang X, Li X, Zhao J, Wang S, Wei G, et al. Bioactive multifunctional hydrogels accelerate burn wound healing via M2 macrophage-polarization, antioxidant and anti-inflammatory. Materials Today Bio [Internet]. 2025 Jun [cited 2025 Aug 15]; 32:101686. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590006425002455
16.    Sun G, Shen YI, Kusuma S, Fox-Talbot K, Steenbergen CJ, Gerecht S. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials [Internet]. 2011 Jan [cited 2025 Aug 15];32(1):95–106. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961210011294
17.    Wang F, Cai X, Shen Y, Meng L. Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioactive Materials [Internet]. 2023 May [cited 2025 Aug 15];23:16–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X22004637
18.    Jaiswal R, Bhadani R. Conductivity Evaluation of Smart Hydrogels composed of Polyacrylamide-Polyaniline. AJRC [Internet]. 2025 Apr 18 [cited 2025 Aug 19]; 67–70. Available from: https://ajrconline.org/AbstractView.aspx?PID=2025-18-2-1
19.    Rana MM, De La Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels [Internet]. 2024 Mar 22 [cited 2025 Aug 15]; 10(4): 216. Available from: https://www.mdpi.com/2310-2861/10/4/216
20.    Parhi R. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Adv Pharm Bull [Internet]. 2017 Dec 31 [cited 2025 Aug 15]; 7(4): 515–30. Available from: http://apb.tbzmed.ac.ir/Abstract/APB_19295_20170413093617
21.    Ribeiro MM, Simões M, Vitorino C, Mascarenhas-Melo F. Physical crosslinking of hydrogels: The potential of dynamic and reversible bonds in burn care. Coordination Chemistry Reviews [Internet]. 2025 Nov [cited 2025 Aug 15]; 542:216868. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0010854525004382
22.    Moreira Teixeira LS, Feijen J, Van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials [Internet]. 2012 Feb [cited 2025 Aug 15]; 33(5): 1281–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296121101283X
23.    Salthouse D, Novakovic K, Hilkens CMU, Ferreira AM. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomaterialia [Internet]. 2023 Jan [cited 2025 Aug 15]; 155:1–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706122007255
24.    Kasoju N, Sunilkumar A. Convergence of tissue engineering and sustainable development goals. Biotechnol Sustain Mater [Internet]. 2024 Dec 19 [cited 2025 Aug 15];1(1):20. Available from: https://biotechsustainablematerials.biomedcentral.com/articles/10.1186/s44316-024-00021-y
25.    Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PYW, et al. Engineered hydrogels for mechanobiology. Nat Rev Methods Primers [Internet]. 2022 Dec 15 [cited 2025 Aug 15]; 2(1): 98. Available from: https://www.nature.com/articles/s43586-022-00179-7
26.    Cun X, Hosta-Rigau L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. Nanomaterials [Internet]. 2020 Oct 20 [cited 2025 Aug 15];10(10):2070. Available from: https://www.mdpi.com/2079-4991/10/10/2070
27.    Alex M, Alsawaftah NM, Husseini GA. State-of-All-the-Art and Prospective Hydrogel-Based Transdermal Drug Delivery Systems. Applied Sciences [Internet]. 2024 Mar 30 [cited 2025 Aug 15]; 14(7): 2926. Available from: https://www.mdpi.com/2076-3417/14/7/2926
28.    Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ‐on‐Chip Systems. Adv Healthcare Materials [Internet]. 2023 Aug [cited 2025 Aug 15]; 12(20): 2203256. Available from: https://onlinelibrary.wiley.com/doi/10.1002/adhm.202203256
29.    Niland S, Riscanevo AX, Eble JA. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. IJMS [Internet]. 2021 Dec 23 [cited 2025 Aug 15]; 23(1): 146. Available from: https://www.mdpi.com/1422-0067/23/1/146
30.    Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J [Internet]. 2008 Dec [cited 2025 Aug 15]; 17(S4): 467–79. Available from: http://link.springer.com/10.1007/s00586-008-0745-3
31.    He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci [Internet]. 2020 [cited 2025 Aug 15]; 8(12): 3248–69. Available from: https://xlink.rsc.org/?DOI=D0BM00263A
32.    Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, et al. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. Journal of Orthopaedic Translation [Internet]. 2025 Jan [cited 2025 Aug 15]; 50:257–73. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214031X24001657
33.    Zustiak SP, Durbal R, Leach JB. Influence of cell-adhesive peptide ligands on poly (ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomaterialia [Internet]. 2010 Sep [cited 2025 Aug 15]; 6(9): 3404–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706110001753
34.    Nazarzadeh Zare E, Khorsandi D, Zarepour A, Yilmaz H, Agarwal T, Hooshmand S, et al. Biomedical applications of engineered heparin-based materials. Bioactive Materials [Internet]. 2024 Jan [cited 2025 Aug 15]; 31:87–118. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X23002414
35.    Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. ATVB [Internet]. 2023 Aug [cited 2025 Aug 15]; 43(8). Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.122.318235
36.    Zhang S, Liu J, Feng F, Jia Y, Xu F, Wei Z, et al. Rational design of viscoelastic hydrogels for periodontal ligament remodeling and repair. Acta Biomaterialia [Internet]. 2024 Jan [cited 2025 Aug 15]; 174:69–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1742706123007213
37.    Wang Q, Zhang Y, Ma Y, Wang M, Pan G. Nano-crosslinked dynamic hydrogels for biomedical applications. Materials Today Bio [Internet]. 2023 Jun [cited 2025 Aug 15]; 20:100640. Available from: https://linkinghub.elsevier.com/retrieve/pii/S259000642300100X
38.    Qazi TH, Blatchley MR, Davidson MD, Yavitt FM, Cooke ME, Anseth KS, et al. Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell [Internet]. 2022 May [cited 2025 Aug 15];29(5):678–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1934590922001114
39.    Jahanbekam S, Asare-Addo K, Alipour S, Nokhodchi A. Smart hydrogels and the promise of multi-responsive in-situ systems. Journal of Drug Delivery Science and Technology [Internet]. 2025 May [cited 2025 Aug 15]; 107:106758. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224725001613
40.    Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, et al. Bioresponsive hydrogels. Materials Today [Internet]. 2007 Apr [cited 2025 Aug 15];10(4):40–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369702107700494
41.    Abueva CDg, Chung PS, Ryu HS, Park SY, Woo SH. Photoresponsive Hydrogels as Drug Delivery Systems. Medical Lasers [Internet]. 2020 Jun 30 [cited 2025 Aug 15];9(1):6–11. Available from: http://www.jkslms.or.kr/journal/view.html?doi=10.25289/ML.2020.9.1.6
42.    Malik US, Niazi MBK, Jahan Z, Zafar MI, Vo DVN, Sher F. Nano-structured dynamic Schiff base cues as robust self-healing polymers for biomedical and tissue engineering applications: a review. Environ Chem Lett [Internet]. 2022 Feb [cited 2025 Aug 15];20(1):495–517. Available from: https://link.springer.com/10.1007/s10311-021-01337-1
43.    Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early-stage recruitment and support of host neurovasculature. Biomaterials [Internet]. 2021 Jan [cited 2025 Aug 15]; 268:120535. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296122030781X
44.    Jo DY, Rafii S, Hamada T, Moore MAS. Chemotaxis of primitive hematopoietic cells in response to stromal cell–derived factor-1. J Clin Invest [Internet]. 2000 Jan 1 [cited 2025 Aug 15];105(1):101–11. Available from: http://www.jci.org/articles/view/7954
45.    Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects [Internet]. 2014 Aug [cited 2025 Aug 15];1840(8):2506–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304416514000129
46.    Chakrapani G, Zare M, Ramakrishna S. Intelligent hydrogels and their biomedical applications. Mater Adv [Internet]. 2022 [cited 2025 Aug 15];3(21):7757–72. Available from: https://xlink.rsc.org/?DOI=D2MA00527A
47.    Rezaei Z, Yilmaz-Aykut D, Tourk FM, Bassous N, Barroso-Zuppa M, Shawl AI, et al. Immunomodulating Hydrogels as Stealth Platform for Drug Delivery Applications. Pharmaceutics [Internet]. 2022 Oct 21 [cited 2025 Aug 15];14(10):2244. Available from: https://www.mdpi.com/1999-4923/14/10/2244
48.    Ding K, Liao M, Wang Y, Lu JR. Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications. Gels [Internet]. 2025 May 31 [cited 2025 Aug 15];11(6):420. Available from: https://www.mdpi.com/2310-2861/11/6/420
49.    Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, et al. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharmaceutics [Internet]. 2024 Oct 7 [cited 2025 Aug 15];21(10):4827–48. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00595
50.    Jang HJ, Yoon JK. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics [Internet]. 2024 Jan 26 [cited 2025 Aug 15];9(2):75. Available from: https://www.mdpi.com/2313-7673/9/2/75
51.    Giraudo MV, Di Francesco D, Catoira MC, Cotella D, Fusaro L, Boccafoschi F. Angiogenic Potential in Biological Hydrogels. Biomedicines [Internet]. 2020 Oct 20 [cited 2025 Aug 15];8(10):436. Available from: https://www.mdpi.com/2227-9059/8/10/436
52.    Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, et al. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Materials Today Bio [Internet]. 2023 Jun [cited 2025 Aug 15]; 20:100614. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590006423000741
53.    Li R, Xu J, Rao Z, Deng R, Xu Y, Qiu S, et al. Facilitate Angiogenesis and Neurogenesis by Growth Factors Integrated Decellularized Matrix Hydrogel. Tissue Engineering Part A [Internet]. 2021 Jun 1 [cited 2025 Aug 15];27(11–12):771–87. Available from: https://www.liebertpub.com/doi/10.1089/ten.tea.2020.0227
54.    Stan D, Tanase C, Avram M, Apetrei R, Mincu N, Mateescu AL, et al. Wound healing applications of creams and “smart” hydrogels. Experimental Dermatology [Internet]. 2021 Sep [cited 2025 Aug 15];30(9):1218–32. Available from: https://onlinelibrary.wiley.com/doi/10.1111/exd.14396
55.    Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm [Internet]. 2023 Aug [cited 2025 Aug 15];4(4): e291. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mco2.291
56.    Gresham RCH, Bahney CS, Leach JK. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioactive Materials [Internet]. 2021 Jul [cited 2025 Aug 15];6(7):1945–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X2030339X
57.    Fedorovich NE, Leeuwenburgh SC, Van Der Helm YJM, Alblas J, Dhert WJA. The osteoinductive potential of printable, cell‐laden hydrogel‐ceramic composites. J Biomedical Materials Res [Internet]. 2012 Sep [cited 2025 Aug 15];100A(9):2412–20. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.34171
58.    Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, et al. Hybrid scaffolds for bone tissue engineering: Integration of composites and bioactive hydrogels loaded with hDPSCs. Biomaterials Advances [Internet]. 2025 Jan [cited 2025 Aug 15]; 166:214042. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772950824002851
59.    Lv Q, Zhou D, He Y, Xu T, Qiu X, Zeng J. Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair. Bioactive Materials [Internet]. 2025 Jul [cited 2025 Aug 15]; 49:172–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X25000131
60.    Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting – An emerging strategy to fabricate biomimetic and large vascularized tissue constructs. Bioactive Materials [Internet]. 2024 Feb [cited 2025 Aug 15]; 32:356–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X23003171
61.    Hammam IA, Winters R, Hong Z. Advancements in the application of biomaterials in neural tissue engineering: A review. Biomedical Engineering Advances [Internet]. 2024 Nov [cited 2025 Aug 15]; 8:100132. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2667099224000215
62.    Ji R, Hao Z, Wang H, Li X, Duan L, Guan F, et al. Application of Injectable Hydrogels as Delivery Systems in Spinal Cord Injury. Gels [Internet]. 2023 Nov 16 [cited 2025 Aug 15];9(11):907. Available from: https://www.mdpi.com/2310-2861/9/11/907
63.    Gogoi D, Kumar M, Singh J. A comprehensive review on hydrogel-based bio-ink development for tissue engineering scaffolds using 3D printing. Annals of 3D Printed Medicine [Internet]. 2024 Aug [cited 2025 Aug 15]; 15:100159. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666964124000183
64.    Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials [Internet]. 2019 Oct 12 [cited 2025 Aug 15];12(20):3323. Available from: https://www.mdpi.com/1996-1944/12/20/3323
65.    Kanugo A, Chakravarti A. Recent Advances in the Biomedical Applications of Hydrogels. RJST [Internet]. 2025 Jul 8 [cited 2025 Aug 19];289–95. Available from: https://ajptonline.com/AbstractView.aspx?PID=2025-15-3-12
66.    Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, et al. 4D bioprinting of programmed dynamic tissues. Bioactive Materials [Internet]. 2024 Jul [cited 2025 Aug 15]; 37:348–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X24001245
67.    Coetzee D, Venkataraman M, Militky J, Petru M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers [Internet]. 2020 Mar 27 [cited 2025 Aug 15];12(4):742. Available from: https://www.mdpi.com/2073-4360/12/4/742
68.    Ji J, Li L, Guo W, Zhang J, Yao Y, Chen H, et al. Nanoscale synthetic biology with innovative medicinal applications. Fundamental Research [Internet]. 2024 Nov [cited 2025 Aug 15];S266732582400459X. Available from: https://linkinghub.elsevier.com/retrieve/pii/S266732582400459X
69.    Narayanan KB. Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review. Biomimetics [Internet]. 2025 May 15 [cited 2025 Aug 15];10(5):317. Available from: https://www.mdpi.com/2313-7673/10/5/317
70.    Lyu X, Hu Y, Shi S, Wang S, Li H, Wang Y, et al. Hydrogel Bioelectronics for Health Monitoring. Biosensors [Internet]. 2023 Aug 14 [cited 2025 Aug 15];13(8):815. Available from: https://www.mdpi.com/2079-6374/13/8/815
71.    Jiao C, Liu J, Yan S, Xu Z, Hou Z, Xu W. Hydrogel-based soft bioelectronic interfaces and their applications. J Mater Chem C [Internet]. 2025 [cited 2025 Aug 15];13(6):2620–45. Available from: https://xlink.rsc.org/?DOI=D4TC04150J
72.    Li Z, Song P, Li G, Han Y, Ren X, Bai L, et al. AI energized hydrogel design, optimization and application in biomedicine. Materials Today Bio [Internet]. 2024 Apr [cited 2025 Aug 15]; 25:101014. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590006424000735
73.    Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health Journal [Internet]. 2022 Dec [cited 2025 Aug 15];6(4):217–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2414644722000744

Recomonded Articles:

Author(s): A. K. Meena, Jyoti Meena, Ankush Jadhav, M. M. Padhi

DOI:         Access: Open Access Read More

Author(s): Chaudhari R. D, Girase P. R, Suryawanshi H. P, Pawar S. P

DOI: 10.5958/2231-5713.2018.00025.9         Access: Open Access Read More

Author(s): Durgesh Gautam, Preetam Palkar, Kiran Maule, Shilpa Singh, Gopika Sawant, Chinmay Kuvalekar, Tushar Rukari, Vijay A. Jagtap

DOI: 10.5958/2231-5713.2020.00028.8         Access: Open Access Read More

Author(s): Sushil D. Patil, Mukul J. Gupta, Kaustubh S. Kote, Mr. Rajendran R

DOI: 10.5958/2231-5713.2019.00039.4         Access: Open Access Read More

Author(s): Nikita Kumawat, Jidnyasa Pantwalawalkar, Yogini Vispute, Rahul Tade, Sopan Nangare

DOI: 10.52711/2231-5713.2021.00028         Access: Open Access Read More

Author(s): Dange YD, Honmane SM, Patil PA, Gaikwad UT, Jadge DR

DOI: 10.5958/2231-5713.2017.00010.1         Access: Open Access Read More

Author(s): S.K. Purohit, R. Solanki, R. Soni, V. Mathur

DOI:         Access: Open Access Read More

Author(s): M. Karthika, K. Pramod, K.C. Ajithkumar, U. S. Jijith

DOI: 10.5958/2231-5713.2016.00025.8         Access: Open Access Read More

Author(s): P.K. Mohanty, Neha Chourasia, Neraj Kumar Bhatt, Y.A. Jaliwala

DOI:         Access: Open Access Read More

Author(s): S. Sathish Kumar, G. Melchias

DOI:         Access: Open Access Read More

Author(s): Manohar D. Kengar, Amit A. Jadhav, Suraj B. Kumbhar, Rahul P. Jadhav

DOI: 10.5958/2231-5713.2019.00020.5         Access: Open Access Read More

Author(s): Sweetha G., Sangeetha B., Prabhu S.

DOI:         Access: Open Access Read More

Author(s): Sandhya Potdar, Vidyaranee Ingale, Nilesh Kulkarni, Manojkumar Munde, Shashikant Dhole

DOI: 10.52711/2231-5713.2022.00022         Access: Open Access Read More

Author(s): Avinash B. Thalkari, Pawan N. Karwa, Priyanka S. Chopane, Nareshkumar R. Jaiswal

DOI: 10.5958/2231-5713.2019.00008.4         Access: Open Access Read More

Author(s): Jayesh S. Gharat, Yogita V. Dalvi

DOI: 10.5958/2231-5713.2018.00028.4         Access: Open Access Read More

Author(s): R. Solanki, B.P. Nagori

DOI:         Access: Open Access Read More

Author(s): Jyotsna R., Malavikha Rajiv Moorthy, A. Neeha Dev

DOI:         Access: Open Access Read More

Author(s): Aabasaheb B. Tambve, Prakash D. Jadhav, Mayur N. Ghotkar, Ashwinkumar S. Chougule, Smita P. Borkar

DOI: 10.5958/2231-5713.2020.00020.3         Access: Open Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags