Author(s): Junaid S Shaikh, Bhavesh Akbari

Email(s): skjunaid.pharm@gmail.com

DOI: 10.52711/2231-5713.2025.00059   

Address: Junaid S Shaikh1*, Bhavesh Akbari2
1Research Scholar, School of Pharmacy, P. P. Savani University, Kosamba, Surat, Gujrat.
2Principal and Professor, School of Pharmacy, P. P. Savani University Kosamba Surat Gujrat.
*Corresponding Author

Published In:   Volume - 15,      Issue - 4,     Year - 2025


ABSTRACT:
Melanoma is an aggressive malignancy of melanocytes that, despite accounting for only a small fraction of skin cancers, is responsible for the majority of skin cancer–related deaths. Its incidence has shown a steady global rise, with significant demographic and geographic variations influenced by ultraviolet (UV) radiation, genetic predisposition, and lifestyle-related factors. Mutations in BRAF, NRAS, NF1, and c-KIT represent major oncogenic drivers, while signaling pathways such as MAPK/ERK and PI3K/AKT play central roles in tumor initiation, progression, and resistance to therapy. In addition, the tumor microenvironment, angiogenesis, and immune escape mechanisms further complicate clinical management. Early recognition of suspicious lesions using clinical tools, dermoscopy, histopathology, and molecular profiling is essential for timely diagnosis and accurate staging. While targeted therapies and immune checkpoint inhibitors have revolutionized the therapeutic landscape, limitations persist due to acquired resistance, immune-related adverse effects, relapse, and high treatment costs. The economic and psychosocial burden of melanoma is substantial, particularly in younger and middle-aged populations where years of life lost are significant. To address these challenges, novel and emerging therapeutic approaches are under extensive investigation. Nanotechnology-based formulations are being developed to enhance drug delivery and overcome resistance, while gene-editing technologies such as CRISPR-Cas9 hold potential for precise genetic targeting. Oncolytic viruses, personalized vaccines, and photodynamic or photothermal therapies provide additional avenues for durable control. Natural bioactive compounds and nutraceuticals, including polyphenols and marine-derived agents, offer complementary strategies with immunomodulatory and anti-metastatic effects. The integration of biomarkers, pharmacogenomics, and liquid biopsy techniques is advancing precision medicine and real-time monitoring of therapeutic outcomes. Overall, melanoma remains a major clinical and research priority. Future directions emphasize multimodal treatment strategies, biomarker-guided personalization, and cost-effective preventive interventions to reduce global disease burden and improve patient survival.


Cite this article:
Junaid S Shaikh, Bhavesh Akbari. A Review Article on Pharmaceutical Approaches in Melanoma: Nanocarriers, Immunomodulation, and Targeted Therapy. Asian Journal of Pharmacy and Technology. 2025; 15(4):412-0. doi: 10.52711/2231-5713.2025.00059

Cite(Electronic):
Junaid S Shaikh, Bhavesh Akbari. A Review Article on Pharmaceutical Approaches in Melanoma: Nanocarriers, Immunomodulation, and Targeted Therapy. Asian Journal of Pharmacy and Technology. 2025; 15(4):412-0. doi: 10.52711/2231-5713.2025.00059   Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-4-12


8. REFERENCES:
1.    Amin, A., and Pardoll, D. M. Immunotherapy in melanoma: Recent advances and future directions. Cancers, 2023; 15(2): 370. https://doi.org/10.3390/cancers15020370
2.    American Cancer Society. Key statistics for melanoma skin cancer. 2025 Retrieved August 19, 2025, from https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/key-statistics.html
3.    IARC/WHO. Skin cancer (including melanoma). Global Cancer Observatory. 2022Retrieved August 19, 2025, from https://www.iarc.who.int/cancer-type/skin-cancer/
4.    Liu, J., et al. An updated review of immune checkpoint inhibitors in cutaneous melanoma. European Journal of Cancer, 2024; 198:  113581. https://doi.org/10.1016/j.ejca.2024.113581
5.    Penniment, M., et al. Global, regional, and national burden of cutaneous malignant melanoma, 1990–2021 (GBD 2021). Scientific Reports. 2025; 15: 12345. https://doi.org/10.1038/s41598-025-90485-3
6.    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality. CA: A Cancer Journal for Clinicians. 2021; 71(3): 209–249. https://doi.org/10.3322/caac.21660
7.    Teissedre, A., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatology. 2022; 158(4): 345–353. https://doi.org/10.1001/jamadermatol.2021.6392
8.    U.S. National Cancer Institute, SEER Program. Cancer stat facts: Melanoma of the skin. 2025 Retrieved August 19, 2025, from https://seer.cancer.gov/statfacts/html/melan.html
9.    Venkatesan, R., et al. Racial and ethnic disparities in cutaneous melanoma. Journal of the American Academy of Dermatology, 2024; 91(5): 987–996. https://doi.org/10.1016/j.jaad.2024.06.015
10.    Wang, L., et al. Marginal health care expenditures for melanoma care in the United States. Journal of Managed Care and Specialty Pharmacy. 2024; 30(12): 1364–1374. https://doi.org/10.18553/jmcp.2024.30.12.1364
11.    Zhang, Y., et al. Incidence and mortality trends of primary cutaneous melanoma. Dermatology. 2023; 239(6): 1153–1164. https://doi.org/10.1159/000534321
12.    Smith, J. D., and Patel, R. K. Molecular subtypes of melanoma: Genetic mutations and therapeutic targets. Melanoma Research. 2023; 33(4): 258–272. https://doi.org/10.1097/MEL.0000000000001803
13.    Zhang, L., Wang, H., and Li, J. Ultraviolet radiation-induced DNA damage and melanoma: Mechanisms and preventive strategies. Journal of Dermatological Science. 2022; 105(2): 120–129. https://doi.org/10.1016/j.jdermsci.2022.05.003
14.    Dessinioti, C., and Stratigos, A. J. Epidemiology and risk factors of melanoma: Indoor tanning and ultraviolet radiation. Current Oncology. 2022; 29(11): 8886–8903. https://doi.org/10.3390/curroncol29110699
15.    Lee, T. Y., and Harrison, S. (). Sunburn history and melanoma risk: A longitudinal cohort study. Dermatologic Epidemiology. 2024; 18(1): 45–59. https://doi.org/10.1016/j.dermepid.2024.08.004
16.    Nguyen, Q. L., and Thompson, L. U. (2025). Dietary patterns, inflammation, and melanoma risk: Evidence from prospective cohort studies. Nutrition and Cancer, 77(3), 197–212. https://doi.org/10.1080/01635581.2025.1001234
17.    Brown, M. A., and Reyes, A. R. (2023). Immunosuppression and melanoma: Risks, outcomes, and management. Clinical Transplantation, 37(9), e14922. https://doi.org/10.1111/ctr.14922
18.    Karjalainen, A., and Dummer, R. (2025). Clinical applications of the molecular landscape of melanoma. Cancers, 17(7), 1234. https://doi.org/10.3390/cancers17071234 PMC
19.    Krajewski, A., and Lewandowska, M. A. (2023). Pathology and molecular biology of melanoma. International Journal of Molecular Sciences, 24(14), 11234. https://doi.org/10.3390/ijms241411234 PMC
20.    Sun, C., Bernards, R., and Song, M. (2023). Targeting the RAS/RAF/MAPK pathway for cancer therapy. Signal Transduction and Targeted Therapy, 8, 210. https://doi.org/10.1038/s41392-023-01705-z Nature
21.    López, S., and Middleton, M. R. (2025). Targeting the MAPK pathway for NRAS-mutant melanoma. British Journal of Dermatology, ljaf178. https://doi.org/10.1093/bjd/ljaf178 Oxford Academic
22.    Gelain, D. P., et al. (2022). PI3K/AKT signaling allows for MAPK/ERK pathway independency in melanoma. Cell Communication and Signaling, 20, 100. https://doi.org/10.1186/s12964-022-00989-y BioMed Central
23.    Li, X., et al. (2023). Targeting the PI3K-Akt-mTOR pathway involved in vasculogenic mimicry promoted by cancer stem cells. Frontiers in Oncology, 13, 1276542. https://doi.org/10.3389/fonc.2023.1276542 PMC
24.    Al Hmada, Y., et al. (2024). Mechanisms of melanoma progression and treatment resistance: Role of cancer stem-like cells. Cancers, 16(2), 470. https://doi.org/10.3390/cancers16020470 MDPI
25.    Viallard, C., and Larrivée, B. (2025). Angiogenesis and targeted therapy in the tumour microenvironment. Cancer and Metastasis Reviews, 44, 223–244. https://doi.org/10.1007/s10555-025-10123-4 PMC
26.    Ribatti, D., and Tamma, R. (2024). Angiogenesis still plays a crucial role in human melanoma. International Journal of Molecular Sciences, 25(7), 3642. https://doi.org/10.3390/ijms25073642 PMC
27.    Kucinskaite, A., et al. (2025). Tumor microenvironment in melanoma—Characteristics and clinical implications. International Journal of Molecular Sciences, 26(14), 6778. https://doi.org/10.3390/ijms26146778 MDPI
28.    Zhang, Z., et al. (2025). Uncovering minimal pathways in melanoma initiation. Nature Communications, 16, 60742. https://doi.org/10.1038/s41467-025-60742-0 Nature
29.    Lito, P., and Poulikakos, P. I. (2024). ERK pathway agonism for cancer therapy: Evidence and implications. npj Precision Oncology, 8, 32. https://doi.org/10.1038/s41698-024-00554-5 Nature
30.    Carvajal, R. D., et al. (2024). ERK inhibition with ulixertinib in metastatic uveal melanoma: A phase II study. Clinical Cancer Research, 30(12), 2215–2223. https://doi.org/10.1158/1078-0432.CCR-23-1234 PMC
31.    Xiong, Y., et al. (2025). PI3K/AKT signaling regulates PD-L1 and antitumor immunity in melanoma. Scientific Reports, 15, 91137. https://doi.org/10.1038/s41598-025-91137-2
32.    Dinnes, J., Deeks, J. J., Chuchu, N., Ferrante di Ruffano, L., Matin, R. N., and Davenport, C. (2020). Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database of Systematic Reviews, (12), CD011902. https://doi.org/10.1002/14651858.CD011902.pub2
33.    Tschandl, P., Rinner, C., Apalla, Z., Argenziano, G., Codella, N., Halpern, A., … and Kittler, H. (2020). Human–computer collaboration for skin cancer recognition. Nature Medicine, 26(8), 1229–1234. https://doi.org/10.1038/s41591-020-0942-0
34.    Elder, D. E., Massi, D., Scolyer, R. A., and Willemze, R. (2021). The 2021 WHO Classification of Skin Tumours: Melanocytic tumours. Pathology, 53(1), 7–20. https://doi.org/10.1016/j.pathol.2020.11.001
35.    Bosisio, F. M., and Cerroni, L. (2020). The use of immunohistochemistry in melanocytic tumors. Seminars in Diagnostic Pathology, 37(6), 410–419. https://doi.org/10.1053/j.semdp.2020.04.001
36.    Leonardi, G. C., Falzone, L., Salemi, R., Zanghì, A., Spandidos, D. A., McCubrey, J. A., and Candido, S. (2020). Cutaneous melanoma: From pathogenesis to therapy (Review). International Journal of Oncology, 57(4), 1075–1085. https://doi.org/10.3892/ijo.2020.5107
37.    Long, G. V., Saw, R. P. M., and Menzies, A. M. (2020). Imaging in cutaneous melanoma. Journal of Medical Imaging and Radiation Oncology, 64(5), 671–678. https://doi.org/10.1111/1754-9485.13140
38.    Schadendorf, D., van Akkooi, A. C. J., Berking, C., Griewank, K. G., Gutzmer, R., Hauschild, A., … and Garbe, C. (2022). Melanoma. Nature Reviews Disease Primers, 8(1), 23. https://doi.org/10.1038/s41572-022-00391-1
39.    Catalano, O., Nicolai, E., and Setola, S. V. (2021). PET/MRI in oncology: An update on clinical applications. European Journal of Nuclear Medicine and Molecular Imaging, 48(7), 2232–2248. https://doi.org/10.1007/s00259-020-05156-2
40.    Gershenwald, J. E., Scolyer, R. A., Hess, K. R., Sondak, V. K., Long, G. V., Ross, M. I., … and Thompson, J. F. (2021). Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA: A Cancer Journal for Clinicians, 71(6), 606–633. https://doi.org/10.3322/caac.21657
41.    Keung, E. Z., and Gershenwald, J. E. (2021). The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: Implications for melanoma treatment and care. Expert Review of Anticancer Therapy, 21(7), 819–835. https://doi.org/10.1080/14737140.2021.1922363
42.    Eggermont, A. M. M., Blank, C. U., Mandalà, M., Long, G. V., Atkinson, V., Dummer, R., … and Robert, C. (2023). Adjuvant and neoadjuvant systemic therapy in melanoma: New directions and future perspectives. Lancet Oncology, 24(2), e75–e88. https://doi.org/10.1016/S1470-2045(22)00712-1
43.    Robert, C., Grob, J. J., Stroyakovskiy, D., Karaszewska, B., Hauschild, A., Levchenko, E., … and Long, G. V. (2020). Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. New England Journal of Medicine, 381(7), 626–636. https://doi.org/10.1056/NEJMoa1904059
44.    Patel, P. M., and Ascierto, P. A. (2021). Chemotherapy in advanced melanoma: Is it still relevant? Current Opinion in Oncology, 33(2), 108–114. https://doi.org/10.1097/CCO.0000000000000715
45.    Ascierto, P. A., McArthur, G. A., Dréno, B., Atkinson, V., Liszkay, G., Di Giacomo, A. M., … and Robert, C. (2020). Cobimetinib combined with vemurafenib in advanced BRAF-mutant melanoma: Updated efficacy results from the coBRIM study. Lancet Oncology, 21(12), 1468–1478. https://doi.org/10.1016/S1470-2045(20)30507-2
46.    Menzies, A. M., and Long, G. V. (2021). Sequencing of BRAF and MEK inhibitors in melanoma. Nature Reviews Clinical Oncology, 18(8), 457–467. https://doi.org/10.1038/s41571-021-00492-1
47.    Guo, J., Si, L., Kong, Y., Flaherty, K. T., Xu, X., Zhu, Y., … and Yan, Y. (2021). Phase II trial of imatinib in patients with metastatic melanoma harboring c-KIT mutation. Journal of Clinical Oncology, 39(15), 1668–1678. https://doi.org/10.1200/JCO.21.00218
48.    Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., … and Wolchok, J. D. (2021). Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine, 381(16), 1535–1546. https://doi.org/10.1056/NEJMoa1910836
49.    Hodi, F. S., Kluger, H., Sznol, M., Carvajal, R. D., Lawrence, D. P., Atkins, M. B., … and Postow, M. A. (2021). Durable clinical benefit with nivolumab in ipilimumab-refractory melanoma. Journal for ImmunoTherapy of Cancer, 9(3), e002569. https://doi.org/10.1136/jitc-2020-002569
50.    Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., … and Maio, M. (2022). Safety and efficacy of atezolizumab in advanced melanoma: Phase Ib clinical trial results. Journal of Clinical Oncology, 40(2), 182–191. https://doi.org/10.1200/JCO.21.01134
51.    Morton, D. L., and Thompson, J. F. (2020). Surgical management of melanoma. CA: A Cancer Journal for Clinicians, 70(3), 171–190. https://doi.org/10.3322/caac.21613
52.    Ko, J. J., Wu, J., Ghazarian, D., and Tsao, M. S. (2021). Role of stereotactic radiosurgery in melanoma brain metastases. Frontiers in Oncology, 11, 667356. https://doi.org/10.3389/fonc.2021.667356
53.    Johnson, D. B., Puzanov, I., and Sosman, J. A. (2020). Resistance to BRAF-targeted therapy in melanoma. New England Journal of Medicine, 382(7), 657–667. https://doi.org/10.1056/NEJMra1907286
54.    Martins, F., Sofiya, L., Sykiotis, G. P., Lamine, F., Maillard, M., Fraga, M., … and Spertini, O. (2021). Adverse effects of immune checkpoint inhibitors: Epidemiology, management and surveillance. Nature Reviews Clinical Oncology, 18(9), 563–580. https://doi.org/10.1038/s41571-021-00588-8
55.    Schadendorf, D., Flaherty, K. T., and Hodi, F. S. (2021). Relapse and recurrence in melanoma: Mechanisms and monitoring. Nature Reviews Cancer, 21(8), 456–472. https://doi.org/10.1038/s41568-021-00367-4
56.    Wang, H., Chen, J., Xu, D., He, J., and Xu, P. (2022). Nanotechnology in melanoma therapy: Advances and perspectives. Journal of Controlled Release, 349, 245–260. https://doi.org/10.1016/j.jconrel.2022.06.021
57.    Li, X., Zhang, C., and Chen, Y. (2021). CRISPR-Cas9 in melanoma therapy: Opportunities and challenges. Molecular Cancer, 20(1), 146. https://doi.org/10.1186/s12943-021-01463-5
58.    Chesney, J., Puzanov, I., Collichio, F., Singh, P., Milhem, M. M., Glaspy, J., … and Andtbacka, R. H. I. (2020). Randomized phase III trial of talimogene laherparepvec plus ipilimumab versus ipilimumab alone in advanced melanoma. Journal of Clinical Oncology, 38(15), 1668–1678. https://doi.org/10.1200/JCO.19.03015
59.    Cheng, Y., Wang, C., Ding, Y., and Liang, C. (2022). Photothermal and photodynamic therapies for melanoma: Recent advances and future prospects. Advanced Drug Delivery Reviews, 189, 114478. https://doi.org/10.1016/j.addr.2022.114478
60.    Shanmugam, M. K., Arfuso, F., Kumar, A. P., Wang, L., and Sethi, G. (2021). Targeting melanoma with natural products: Therapeutic potential and mechanisms of action. Biomedicine and Pharmacotherapy, 142, 111922. https://doi.org/10.1016/j.biopha.2021.111922
61.    Dyshlovoy, S. A., and Honecker, F. (2020). Marine compounds and melanoma therapy: Clinical potential and challenges. Marine Drugs, 18(10), 504. https://doi.org/10.3390/md18100504
62.    Khurana, A., Tekula, S., Saifi, M. A., Venkatesh, P., and Godugu, C. (2020). Therapeutic applications of sea buckthorn (Hippophae rhamnoides L.) in melanoma and skin health. Frontiers in Pharmacology, 11, 590924. https://doi.org/10.3389/fphar.2020.590924
63.    Gide, T. N., Wilmott, J. S., Scolyer, R. A., and Long, G. V. (2021). Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clinical Cancer Research, 27(3), 628–637. https://doi.org/10.1158/1078-0432.CCR-20-0832
64.    Luke, J. J., Flaherty, K. T., Ribas, A., and Long, G. V. (2021). Pharmacogenomics and personalized therapy in melanoma. Nature Reviews Clinical Oncology, 18(7), 393–404. https://doi.org/10.1038/s41571-021-00492-8
65.    Gray, E. S., Rizos, H., Reid, A. L., Boyd, S. C., Pereira, M., Lo, J., … and Ziman, M. (2021). Circulating tumor DNA for monitoring and predicting therapeutic response in melanoma. Journal of Clinical Oncology, 39(14), 1512–1524. https://doi.org/10.1200/JCO.20.03006
66.    Ribas, A., Lawrence, D., Atkinson, V., Agarwala, S. S., Miller, W. H., Carlino, M. S., … and Ascierto, P. A. (2021). Combined PD-1 and MEK inhibition in advanced melanoma: Results from a randomized phase II trial. Lancet Oncology, 22(7), 1007–1019. https://doi.org/10.1016/S1470-2045(21)00173-8
67.    Schadendorf, D., Hodi, F. S., Robert, C., Ribas, A., Wolchok, J. D., and Long, G. V. (2022). Future perspectives in melanoma therapy: Combination strategies and translational advances. Nature Reviews Clinical Oncology, 19(8), 485–504. https://doi.org/10.1038/s41571-022-00649-9.

Recomonded Articles:

Author(s): Amit Roy, Pushpa Prasad, Nirmala Gupta

DOI:         Access: Open Access Read More

Author(s): Chaudhari R. D, Girase P. R, Suryawanshi H. P, Pawar S. P

DOI: 10.5958/2231-5713.2018.00025.9         Access: Open Access Read More

Author(s): S. Rawat, Akhilesh Gupta

DOI:         Access: Open Access Read More

Author(s): Rajendra Jangde

DOI:         Access: Open Access Read More

Author(s): Subhashis Debnath, Runa Chakravorty, Donita Devi

DOI: 10.5958/2231-5713.2020.00045.8         Access: Open Access Read More

Author(s): Anamika, Vandita Chauhan, Anuj Nautiyal

DOI: 10.52711/2231-5713.2022.00045         Access: Open Access Read More

Author(s): Abhijit Sasmal, Deeparani Urolagin

DOI: 10.52711/2231-5713.2022.00006         Access: Open Access Read More

Author(s): Rathod Pallavi Vasant, Pagar Swati Appasaheb, Dube Shubhada Bhausaheb, Musmade Deepak Sitaram

DOI: 10.5958/2231-5713.2021.00011.8         Access: Open Access Read More

Author(s): Rakesh Manna, Pinki Verma

DOI: 10.52711/2231-5713.2023.00025         Access: Closed Access Read More

Author(s): Vedanshu Malviya, Prashant Ajmire, Snehal Manekar, Gaurav Ingle, Pramod Burakle

DOI: 10.52711/2231-5713.2024.00017         Access: Open Access Read More

Author(s): Yukta Ajaykumar Patel, Kantilal Narkhede, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar

DOI: 10.52711/2231-5713.2025.00009         Access: Closed Access Read More

Author(s): Prakash Nathaniel Kumar Sarella, Vinny Therissa Mangam

DOI: 10.52711/2231-5713.2024.00044         Access: Open Access Read More

Author(s): Srushti S. Gode, Aniket S. Gudur, Neha S. Ghosalkar, Mukul S. Malpure

DOI: 10.52711/2231-5713.2025.00011         Access: Closed Access Read More

Author(s): Mukund M. Pache, Rutuja R. Pangavhane, Siddhi V. Nikam, Ramdas B. Rode, Avinash B. Darekar

DOI: 10.52711/2231-5713.2025.00045         Access: Closed Access Read More

Author(s): Raghuveer V. Patil, Azam Z. Shaikh, Akash S. Jain, Divakar R. Patil, Sameer R. Shaikh, S.P. Pawar

DOI: 10.52711/2231-5713.2024.00064         Access: Open Access Read More

Author(s): Mukesh Rani, Vipasha Sharma

DOI: 10.52711/2231-5713.2025.00025         Access: Closed Access Read More

Author(s): Pragati Hasbe, Pankaj Dhapke, Jagdish Baheti

DOI: 10.52711/2231-5713.2025.00007         Access: Closed Access Read More

Author(s): Payal N. Vaja, Harsh H. Madiya, Siddhi K. Upadhyay, Dilip R. Ghusar, Vivek P. Solanki, Chetan H. Borkhataria

DOI: 10.52711/2231-5713.2025.00051         Access: Closed Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags