Author(s): Yukta Ajaykumar Patel, Kantilal Narkhede, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar

Email(s): patelyuktaajay15@gmail.com

DOI: 10.52711/2231-5713.2025.00009   

Address: Yukta Ajaykumar Patel*, Kantilal Narkhede, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar
Department of Pharmaceutics, Smt. BNB Swaminarayan Pharmacy College, Salvav, Vapi-396191, Gujarat, Gujarat Technological University, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 1,     Year - 2025


ABSTRACT:
This review examines the collaboration between artificial intelligence (AI) and pharmacogenomics, emphasizing its potential to revolutionize personalized medicine. By harnessing AI technologies, we can improve drug discovery, optimize treatment protocols, and ultimately enhance patient outcomes. Key findings indicate that while pharmacogenomics has deepened our understanding of how genetics affect drug responses, AI provides innovative solutions to existing challenges, enabling the development of more effective and tailored therapeutic strategies. AI technologies, including machine learning (ML), natural language processing (NLP), and deep learning, are becoming vital in healthcare by facilitating the analysis of large, complex datasets. These technologies enable predictive modeling, pattern recognition, and data-driven decision-making. In pharmacogenomics, AI can identify genetic patterns related to drug responses that traditional methods might miss. By integrating genomic data with clinical information, AI enhances the accuracy of treatment plans, resulting in more individualized patient care. Pharmacogenomics studies how an individual’s genetic composition influences their reaction to medications, which is crucial for personalized medicine. This approach allows healthcare professionals to customize treatments to improve effectiveness and minimize adverse effects. The combination of AI and pharmacogenomics is set to revolutionize treatment strategies, leading to therapies that are more effective and aligned with individual genetic characteristics. As research and technology continue to progress, the potential for AI-driven pharmacogenomics to improve patient care and outcomes becomes increasingly feasible.


Cite this article:
Yukta Ajaykumar Patel, Kantilal Narkhede, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar. Asian Journal of Pharmacy and Technology. 2025; 15(1):51-6. doi: 10.52711/2231-5713.2025.00009

Cite(Electronic):
Yukta Ajaykumar Patel, Kantilal Narkhede, Anuradha Prajapati, Sachin Narkhede, Shailesh Luhar. Asian Journal of Pharmacy and Technology. 2025; 15(1):51-6. doi: 10.52711/2231-5713.2025.00009   Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-1-9


7    REFERENCE:
1.    Kaman Kumar, Pooja Singh, Divya Sharma, Akanksha Singh, Himanshu Gupta, Arjun Singh. Prospective Current Novel Drug Target for the Identification of Natural Therapeutic Targets for Alzheimer's Disease. Asian Journal of Pharmacy and Technology. 2023; 13(3):171-4.
2.    S. Yeswanthi, S. Jayakumari. A Prospective Study on Combinational Drug Efficacy in Hypertensive Patients. Research J. Pharm. and Tech. 2018; 11(2):509-512.
3.    Savita More, Vijay Raje, Namita Phalke, Sarika Lokhande. Bioinformatics – An Emerging Field. Asian J. Res. Pharm. Sci. 2018; 8(4): 185-191.
4.    Gandam Nikita, G.M. Lal. Genetic Variability, Correlation and Path Coefficient Analysis for yield and its components traits in Chickpea (Cicer arietinum L.). Research J. Science and Tech. 2022; 14(1):59-5.
5.    Harith K. Buniya, Athraa H. Hassoon, Almuthana Kh. Hameed. Molecular Genetic variability in the D-loop region for females with Breast Cancer and the effect of the Chemotherapy. Research J. Pharm. and Tech. 2018; 11(9): 3787-3792
6.    Gandam Nikita, G.M. Lal. Genetic Variability, Correlation and Path Coefficient Analysis for yield and its components traits in Chickpea (Cicer arietinum L.). Research J. Science and Tech. 2022; 14(1):59-5.
7.    S. Sasireka. Comparative analysis on video retrieval technique using machine learning. Research J. Science and Tech. 2019; 11(2):148-154
8.    Vikas Chaurasia, Saurabh Pal. Skin Diseases Prediction: Binary Classification Machine Learning and Multi Model Ensemble Techniques. Research J. Pharm. and Tech. 2019; 12(8):3829-3832.
9.    R. M. Balajee, K. Venkatesh. A Survey on Machine Learning Algorithms and finding the best out there for the considered seven Medical Data Sets Scenario. Research J. Pharm. and Tech. 2019; 12(6):3059-3062.
10.    Basil K Varghese, Geraldine Bessie Amali D, Uma Devi K S. Prediction of Parkinson’s Disease using Machine Learning Techniques on Speech dataset. Research J. Pharm. and Tech. 2019; 12(2):644-648.
11.    Leo DencelinX, Ramkumar T. Distributed Machine Learning Algorithms to classify Protein secondary structures for Drug Design – A Survey. Research J. Pharm. and Tech. 2017; 10(9): 3173-3180. doi: 10.5958/0974-360X.2017.00564.9
12.    Naresh. K, Prabakaran. N, Kannadasan. R, Boominathan. P. Diabetic Medical Data Classification using Machine Learning Algorithms. Research J. Pharm. and Tech. 2018; 11(1): 97-100 doi: 10.5958/0974-360X.2018.00018.5
13.    Neha Bhateja, Nishu Sethi, Shivangi Kaushal. Machine Learning and its role in Diverse Business Systems. Research Journal of Science and Technology. 2021; 13(3):213-7.
14.    Taherdoost, H., and Ghofrani, A. AI and the Evolution of Personalized Medicine in Pharmacogenomics. Intelligent Pharmacy. (2024)
15.    Murugan, M., Yuan, B., Venner, E., Ballantyne, C. M., Robinson, K. M., Coons, J. C., and Gibbs, R. A. Empowering personalized pharmacogenomics with generative AI solutions. Journal of the American Medical Informatics Association, 2024; 31(6): 1356-1366.
16.    Okolo, C. A., Olorunsogo, T., and Babawarun, O. A comprehensive review of AI applications in personalized medicine. International Journal of Science and Research Archive, 2024; 11(1): 2544-2549.
17.    Silva, P., Jacobs, D., Kriak, J., Abu-Baker, A., Udeani, G., Neal, G., & Ramos, K. Implementation of pharmacogenomics and artificial intelligence tools for chronic disease management in primary care setting. Journal of Personalized Medicine. 2021; 11(6): 443.
18.    Schork, N. J. (2019). Artificial intelligence and personalized medicine. Precision Medicine in Cancer Therapy, 265-283.


Recomonded Articles:

Author(s): Wajid Ahmad, Jaza Quazi, Reshma Khan, Nadeem Ahmad, Nawed Ansari

DOI: 10.52711/2231-5713.2022.00023         Access: Open Access Read More

Author(s): Rutuja Saurabh Shah

DOI: 10.52711/2231-5713.2021.00035         Access: Open Access Read More

Author(s): Beedha. Saraswathi, Dr. T. Satyanarayana, K. Mounika, G. Swathi , K. Sravika, M. Mohan Krishna

DOI: 10.5958/2231-5713.2018.00004.1         Access: Open Access Read More

Author(s): Basavaraj, Someswara Rao B, S.V Kulkarni, Pramod Patil , Chetan Surpur

DOI:         Access: Open Access Read More

Author(s): V Jhansipriya Marabathuni, M. Bhavani, M. Lavanya, K. Padmaja, N. Madhavi, P. Babu, Ch. M. M. Prasada Rao

DOI: 10.5958/2231-5713.2017.00022.8         Access: Open Access Read More

Author(s): AVS Madhu Latha, T Naga Ravikiran, J N Suresh Kumar

DOI: 10.5958/2231-5713.2019.00001.1         Access: Open Access Read More

Author(s): Neha Srivastava, Seema Thakur, Anchal Bajaj, Nikita Sahi

DOI:         Access: Open Access Read More

Author(s): Shital S. Shinde, Girishchandra R. Mandake, Manoj M. Nitalikar

DOI: 10.5958/2231-5713.2018.00039.9         Access: Open Access Read More

Author(s): Nitin A. Gaikwad, Abhishek S. Pujari , Indrajeet V. Mane, Ganesh B. Vambhurkar, Pravin P. Honmane

DOI: 10.5958/2231-5713.2019.00017.5         Access: Open Access Read More

Author(s): Dange YD, Honmane SM, Patil PA, Gaikwad UT, Jadge DR

DOI: 10.5958/2231-5713.2017.00010.1         Access: Open Access Read More

Author(s): Sarfaraz Md., Arshad Ahmed Khan K., Doddayya H., Reddy S.R. , Udupi R.H.

DOI:         Access: Open Access Read More

Author(s): B. Ranga Nayakulu, Nakka Ravi Kumar, Ch. Kiran Kumar, P. Raja Abhilash

DOI: 10.5958/2231-5713.2016.00012.X         Access: Open Access Read More

Author(s): P. Sabitha Reddy, S. Sujani, K. Ravindra Reddy

DOI:         Access: Open Access Read More

Author(s): Pradip D. Dhangar, Parth S. Patil, Rohit S. Jaiswal, Azam. Z. Shaikh

DOI: 10.52711/2231-5713.2021.00027         Access: Open Access Read More

Author(s): Sanjay S. Patel, Sparsh A. Shah

DOI: 10.52711/2231-5713.2022.00054         Access: Open Access Read More

Author(s): Shashikant Chandrakar, Amit Roy, Ananta Choudhury, Suman Saha, Sanjib Bahadur, Pushpa Prasad

DOI:         Access: Open Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags