Author(s): Sanjay S. Patel, Sparsh A. Shah


DOI: 10.52711/2231-5713.2022.00054   

Address: Sanjay S. Patel*, Sparsh A. Shah
Shri B.M. Shah College of Pharmaceutical Education and Research, Modasa, Gujarat.
*Corresponding Author

Published In:   Volume - 12,      Issue - 4,     Year - 2022

Artificial Intelligence (AI) focuses in producing intelligent modeling, which helps in imagining knowledge, cracking problems and decision making. In the year 1943, the first work which is now recognized as AI was done by Warren McCulloch and Walter pits. Previously, Artificial Intelligence was only limited to the field of engineering, but recently, AI plays an important role in various fields of pharmacy like drug discovery, drug delivery formulation development, marketing, management, marketing, quality assurance, hospital pharmacy etc. In drug discovery and drug delivery formulation development, various Artificial Neural Networks (ANNs) like Deep Neural Networks (DNNs) or Recurrent Neural Networks (RNNs) are being employed. Several implementations of drug discovery have currently been analyzed and supported the power of the technology in quantitative structure-property relationship (QSPR) or quantitative structure-activity relationship (QSAR). In addition, de novo design promotes the invention of significantly newer drug molecules with regard to desired/optimal qualities. Now the robots are using in the various medical procedures as they are more trustworthy for doctors, as they are more advanced in their work, as they can do any task within the short time period and effectively than humans. This is concluded that AI is the new evolving field in every sector, even in pharmacy, and it need more development for updating the current scenario as well as for new researches.

Cite this article:
Sanjay S. Patel, Sparsh A. Shah. Artificial Intelligence: Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology; 12(4):337-8. doi: 10.52711/2231-5713.2022.00054

Sanjay S. Patel, Sparsh A. Shah. Artificial Intelligence: Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology; 12(4):337-8. doi: 10.52711/2231-5713.2022.00054   Available on:

1.    Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019; 24: 773–780.
2.    Hassanzadeh P, Atyabi F, and Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019; 151: 169-190.  
3.    Russel S, Dewey D, and Tegmark M. Research priorities for robust and beneficial artificial intelligence. AI. Mag. 2015; 36(4): 105-114. 
4.    Duch W, Setiono R, and Zurada JM. Computational intelligence methods for rule-based data understanding. Proc. IEEE. 2004; 92(5): 771-805.
5.    Ramesh AN, Kambhampati C, Monson JR, and Drew PJ. Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 2004; 86(5): 334.
6.    Miles J, Walker A. The potential application of artificial intelligence in transport. Proc IEEE.-Intell. Transport Syst., 2006; 153: 183–198. 
7.    Jiang F, Jiang Y, and Zhi H. Artificial intelligence in healthcare: Past, present and future., Stroke Vasc Neurol. 2017; 2(4): 230-243.  
8.    Beneke F, Mackenrodt MO. Artificial intelligence and collusion., IIC Int. Rev. Intellectual Property Competition Law. 2019; 50:109–134. 
9.    Bieleck, Andrzej. Foundations of artificial neural networks. Models of Neurons and Perceptrons: Selected Problems and Challenges, 2019;15–28.
10.    Kalyane D, Sanap G, Paul D, Shenoy S, Anup N, Polaka S, Tambe V, and Tekade RK. Artificial intelligence in the pharmaceutical sector: current scene and future prospect., In the Future of Pharmaceutical Product Development and Research, 2020; 73-107.
11.    Hanggi M, and Moschytz GS. Cellular Neural Networks: Analysis, Design and Optimization. Springer Science and Business Media. 2000. 
12.    Moran, ME, Evolution of robotic arms. Journal of Robotic Surgery. 2007; 1(2): 103-111.
13.    Weizenbaum J, ELIZAda. Computer program for the study of natural language communication between man and machine. Commun. ACM. 1966; 9: 36-45.
14.    Weiss S, Kulikowski CA, Safir A. Glaucoma consultation by computer. Comput. Biol. Med. 1978; 8: 25-40.
15.    Kulikowski CA, Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting scientific inquiry and clinical art–with reflections on present aim challenges. Yearbook of Medical Informatics. 2019; 28(01): 249-256.
16.    Amisha PM, Pathania M, and Rathaur VK. Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care. 2019; 8(7): 23-28.
17.    The Massachusetts General Hospital Laboratory of Computer Science. Using decision support to help explain clinical manifestations of disease. Available from; URL:
18.    Ferrucci D, Levas A, Bagchi S, Gondek D, and Mueller ET. Watson: beyond jeopardy!. Artificial Intelligence. 2013; 199: 93-105.
19.    Mintz Y, Brodie R, Introduction to artificial intelligence in medicine. Minim. Invasive Ther Allied Technol. 2019; 29: 73-81.
20.    Comendador BEV, Francisco BMB, Medenilla JS, and Mae S. Pharmabot: a pediatric generic medicine consultant chatbot. J. Automation and Control Engineering. 2015; 3(2): 137-140.
21.    Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, Ferrante P, Argentinis E, Sattler R, and Bowser R. Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta. Neuropathologica. 2018; 135(2): 227-247. 
22.    Sellwood MA, Artificial intelligence in drug discovery. Future Science. 2018; 10(17): 2025–2028.
23.    Zhu H., Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol., 2020; 60: 573–589 
24.    Pereira JC, Caffarena ER, and Dos Santos CN. Boosting docking-based virtual screening with deep learning., Journal of Chemical Information and Modeling. 2016; 56(12): 2495-2506.
25.    Firth NC, Atrash B, Brown N, and Blagg J. MOARF., An integrated workflow for multiobjective optimization: implementation, synthesis, and biological evaluation., Journal of Chemical Information and Modeling, 2015; 55(6): 1169-1180.
26.    Zhang L, Tan J, Han D, and Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discovery Today. 2017; 22(11): 1680-1685.
27.    King RD, Hirst JD, and Sternberg MJ. Comparison of artificial intelligence methods for modeling pharmaceutical QSARS. Applied Artificial Intelligence an International Journal. 1995; 9(2): 213-233.
28.    Yildirim O, Gottwald M, Schüler P, Michel MC. Opportunities and challenges for drug development: public–private partnerships, adaptive designs and big data. Front Pharmacol. 2016; 7: 461.
29.    Shah N, Patel N, Patel KR. A sequential review on intelligent drug delivery system. J. Pharm. Sci. Biosci. Res. 2013; 3(5): 158-162. 
30.    Utpal Jana, Sovan Pal, G.P. Mohanta, P.K. Manna, R. Manavalan. Nanoparticles: A Potential Approach for Drug Delivery. Research J. Pharm. and Tech. 2011; 4(7):1016-1019.
31.    Medarevic DP, Kleinebudde P, Djuris J, Djuric Z, Ibric S, Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Dev. Ind. Pharm. 2016;b42(3):b389-402. 
32.    Barmpalexis P, Koutsidis I, Karavas E, Louk D, Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid dispersions by melt mixing technique and optimization of dissolution using artificial neural networks. Eur. J. Pharm. Biopharm. 2013; 85(3): 1219-1231.
33.    Kumar KJ, Panpalia GM, Priyadarshini S, Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion. Acta. Pharm. 2011; 61(2): 249-256. 
34.    Podlogar F, Sibanc R, Gasperlin M, Evolutionary artificial neural networks as tools for predicting the internal structure of microemulsions. J. Pharm.Pharmaceut. Sci. 2008; 11(1): 67-76
35.    Agatonovic Kustrin S, Glass BD, Wisch MH, Alany RG, Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharm. Res. 2003; 20(11): 1760-1765.
36.    Petrovic J, Ibric S, Betz G, Duric Z, Optimization of matrix tablets-controlled drug release using Elman dynamic neural networks and decision trees. Int. J. Pharm. 2012; 428(1-2): 57-67.
37.    Mandal U, Gowda V, Ghosh A, Bose A, Bhaumik U, Chatterjee B, Optimization of metformin HCl 500 mg sustained release matrix tablets using artificial neural network (ANN) based on multilayer perceptrons (MLP) model, Chem. Pharm. Bull, 2008; 56(2): 150-155. 
38.    Barmpalexis P, Kanaze FI, Kachrimanis K, Georgarakis E, Artificial neural networks in the optimization of a nimodipine controlled release tablet formulation. Eur. J. Pharm.Biopharm. 2010; 74(2): 316-323. 
39.    Zhang ZH, Wang Y, Wu WF, Zhao X, Sun XC, Wang HQ, Development of glipizide push-pull osmotic pump controlled release tablets by using expert system and artificial neural network. Yao XueXue Bao. 2012; 47(12): 1687-1695. 
40.    Vaithiyalingam S, Khan MA, Optimization and characterization of controlled release multi-particulate beads formulated with customized cellulose acetate butyrate dispersion, Int. J. Pharm, 2002; 234(1-2): 179-193.
41.    Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB, Papain entrapment in alginate beads for stability improvement and site-specific delivery: physicochemical characterization and factorial optimization using neural network modeling. AAPS Pharm. Sci. Tech. 2005; 6(2): 209-222.
42.    Zhang AY, Fan TY., Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology. Beijing Da XueXue Bao Yi Xue Ban. 2010; 42(2): 197-201.
43.    Pal D, Nayak AK, Development, optimization and anti-diabetic activity of gliclazide-loaded alginate-methyl cellulose mucoadhesive microcapsules. AAPS. Pharm. Sci. Tech. 2011;12(4):1431-1441
44.    Sacha GM, Varona P. Artificial intelligence in nanotechnology. Nanotechnology. 2013;24(45):452002.
45.    Ho D, Wang P, and Kee T. Artificial intelligence in nanomedicine. Nanoscale Horizons. 2019;4(2):365-377.
46.    Amane NB, Shete SD, Chavan RV, Desai PS, VR Salunkhe. Application of Nanoscience in Pharmacy: Review on Nanotubes developments and its Evaluation. Int. J. Tech. 2019; 9(2):54-66.
47.    Yang X, Wang Y, Byrne R, Schneider G, and Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chemical Reviews. 2019;119(18):10520-10594.
48.    Lounkine Eugen, Michael JK, Steven W, Dmitri M, Jacques H, Jeremy LJ, Paul L. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012:486(7403):361-367.
49.    Pu Limeng, Misagh Naderi, Tairan Liu, Hsiao Chun Wu, Supratik Mukhopadhyay, and Michal Brylinski. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology. (2019);20(1):1-15.
50.    Basile, AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol. 2019;40:624-635
51.    Basile AO. Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends in Pharmacological Sciences. 2019;40(9):624-635.
52.    Gayvert KM, Madhukar NS, and Elemento O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chemical Biology. 2016;23(10):1294-1301.
53.    Jimenez Carretero D, Abrishami V, Fernandez de Manuel L, Palacios I, Quilez-Alvarez A, Diez-Sanchez A, Del Pozo MA, and Montoya MC. Tox_(R) CNN: Deep learning-based nuclei profiling tool for drug toxicity screening. PLoS Computational Biology. 2018;14(11):1006-238.
54.    Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nature Biotechnol. 2006;24(4):437-438.
55.    Oprea Ti, Nielsen, SK, Ursu O. Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing. Mol. Inform. 2011;30(2-3):100–111.
56.    Patel Minesh. A Review on Importance of Artificial Intelligence in Alzheimer’s Disease and it’s Future Outcomes for Alzheimer’s Disease. Research J. Pharmacology and Pharmacodynamics.2022;14(1):13-2.
57.    Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021;26(1):80–93.
58.    Fogel, DB, Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemporary Clinical Trials Communications. 2018;11:156–164.
59.    Kalafatis, SP, Positioning strategies in business markets. J. Business Ind. Marketing. 2000;15(6):416–437
60.    Zhavoronkov A, Vanhaelen Q, and Oprea TI. Will artificial intelligence for drug discovery impact clinical pharmacology. Clinical Pharmacology & Therapeutics. 2020;107(4):780-785.
61.    Tripathy RK, Mahanta S, Paul S. Artificial Intelligence based classification of breast cancer using cellular images. RSC. Advance. 2014;4:9349–9355.
62.    Ho CWL, Soon D, Caals K, Kapur J. Governance of automated image analysis and artifcial intelligence analytics in healthcare. Clinical Radiology. 2019;74:329–337.
63.    Andrysek T, Impact of physical properties of formulations on bioavailability of active substance: Current and novel drugs with cyclosporine. Molecular Immunology. 2003;39(17–18):1061–1065.
64.    Elton DC, Boukouvalas Z, Butrico MS. Applying machine learning techniques to predict the properties of energetic materials. Sci. Rep. 2018;8:9059.
65.    Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018;4:1–15.
66.    Tyrchan C, Evertsson E, Matched molecular pair analysis in short: algorithms, applications and limitations. Comput. Struct. Biotechnol.  J. 2017;15:86–90.
67.    Turk S, Merget B, Rippmann F, Fulle S. Coupling matched molecular pairs with machine learning for virtual compound optimization. Journal Chem. Inf. Model. 2017;57:3079–3085.
68.    Chen W, Desai D, Good D, Crison J, Timmins P, Paruchuri S, Wang J, Ha K.  Mathematical Model Based Accelerated Development of Extended-release Metformin Hydrochloride Tablet Formulation. AAPS Pharm. Sci. Technology. 2016;17(4):1007–1013.
69.    Pankaj Thakur, Upasana Thakur, Pooja Kaushal, Amar Deep Ankalgi, Pramod Kumar, Aman Kapoor, Mahendra Singh Ashawat. A Review on GC-MS Hyphenated Technique. Asian J. Pharm. Analysis. 2021; 11(4):285-292.
70.    Aksu B, Paradkar A, Matas MD, Ozer O, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharmaceutical Dev. Technology. 2013;18(1):236–245.
71.    Anitha A. Revathi SV. Jeevanantham S. Eliza GE. Intrusion Detection System based on Artificial Intelligence. Int. J. Tech. 2017; 7(1): 20-24.
72.    Rohan R. Vakhariya, Swati Talolkar, Archana R. Dhole, CS Magdum. OPLC - A Novel Technique. Asian J. Pharm. Ana. 2015; 5(3): 161-167.
73.    Mohamad Saleem Anis, Mohamed Azmi Hassali. Pharmaceutical Digital Marketing of Non-prescription Drugs: A Systematic Scoping Review. Research J. Pharmacy and Tech. 2022; 15(2):941-946.
74.    Milgrom PR, Tadelis S. How Artificial Intelligence and Machine Learning Can Impact Market Design. National Bureau of Economic Research. 2006;26:567-585.
75.    BG Premasudha and Shivakumar Swamy. A Location Intelligent Tool for Finding an Optimal Location for a Retail Pharmacy using Geographic Information Systems. Research J. Science and Tech. 2009;1(1): 20-24.

Recomonded Articles:

Author(s): Dibyajyoti Saha, Vibhor kumar Jain, Bindu Jain, Roshni Tandey

DOI:         Access: Open Access Read More

Author(s): Avinash B. Thalkari, Pawan N. Karwa, Chandrakant S. Gawli

DOI: 10.5958/2231-5713.2018.00017.X         Access: Open Access Read More

Author(s): Abhijit Ray

DOI:         Access: Open Access Read More

Author(s): Wajid Ahmad, Jaza Quazi, Reshma Khan, Nadeem Ahmad, Nawed Ansari

DOI: 10.52711/2231-5713.2022.00023         Access: Open Access Read More

Author(s): Kanchan R. Pagar, Sarika V. Khandbahale

DOI: 10.5958/2231-5713.2019.00023.0         Access: Open Access Read More

Author(s): Abhishek S. Pujari, Nitin A. Gaikwad, Indrajeet V. Mane, Ganesh B. Vambhurkar, Pravin P. Honmane

DOI: 10.5958/2231-5713.2018.00019.3         Access: Open Access Read More

Author(s): Dhadde Gurunath S., Mali Hanmant S., Raut Indrayani D., Nitalikar Manoj M., Bhutkar Mangesh A.

DOI: 10.52711/2231-5713.2021.00025         Access: Open Access Read More

Author(s): Ashwini Shelke, Madhavi Shinde, Rajendra Mogal, Rahul Sable, Anil Jadhav

DOI: 10.5958/2231-5713.2018.00016.8         Access: Open Access Read More

Author(s): Sarjavalagi Vishal Gopal, Prabhat Kumar Chaurasia, Harshitha Arun Pardhe, Singh Suryansh Santosh, Narayan Sah Sonar

DOI: 10.5958/2231-5713.2020.00046.X         Access: Open Access Read More

Author(s): G. Baskar, J. Chandhuru, K. Sheraz Fahad, A.S. Praveen

DOI:         Access: Open Access Read More

Author(s): Jangam Payal R, Thombre Nilima A, Gaikwad Pallavi N

DOI: 10.5958/2231-5713.2017.00027.7         Access: Open Access Read More

Author(s): Dange YD, Honmane SM, Patil PA, Gaikwad UT, Jadge DR

DOI: 10.5958/2231-5713.2017.00010.1         Access: Open Access Read More

Author(s): Jaya Preethi P., Karthikeyan E., Lohita M., Goutham Teja P., Subhash M., Shaheena P., Prashanth Y., Sai Nandhu K.

DOI: 10.5958/2231-5713.2015.00021.5         Access: Open Access Read More

Author(s): T. Tamilselvan, Arokia Rani C., Ashna Raj, Leena Priya M., Nissy Varghese, Sojan P. Paul

DOI: 10.5958/2231-5713.2018.00007.7         Access: Open Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 

Recent Articles