Author(s): Aakash Bairagi, Akhlesh K. Singhai, Ashish Jain

Email(s): aakashbairagi66@gmail.com

DOI: 10.52711/2231-5713.2024.00039   

Address: Aakash Bairagi*, Akhlesh K. Singhai, Ashish Jain
School of Pharmacy, LNCT University, Bhopal, Madhya Pradesh, India.
*Corresponding Author

Published In:   Volume - 14,      Issue - 3,     Year - 2024


ABSTRACT:
Artificial intelligence (AI) has emerged as a potent tool leveraging human-like knowledge to offer swift solutions to intricate challenges. Striking advancements in AI technology and machine learning present a revolutionary opportunity in pharmaceutical drug discovery, formulation, and dosage form testing. By employing AI algorithms that scrutinize vast biological datasets encompassing genomics and proteomics, scientists can pinpoint disease-related targets and forecast their interactions with potential drug candidates. This facilitates a more precise and efficient approach to drug discovery, thereby elevating the chances of successful drug approvals. Moreover, AI holds the potential to curtail development costs by streamlining research and development processes. Machine learning algorithms aid in experimental design and can foresee the pharmacokinetics and toxicity of drug candidates, allowing for the prioritization and refinement of lead compounds, thereby reducing the necessity for extensive and expensive animal testing. Personalized medicine initiatives can be advanced through AI algorithms analyzing real-world patient data, culminating in more efficacious treatment outcomes and enhanced patient compliance. This comprehensive overview delves into the diverse applications of AI in pharmaceutical drug discovery, dosage form design for drug delivery, process refinement, testing, and pharmacokinetics/pharmacodynamics (PK/PD) investigations. It provides a glimpse into various AI-driven methodologies employed in pharmaceutical technology, shedding light on their advantages and limitations. Nonetheless, sustained investments in and exploration of AI within the pharmaceutical sector present promising avenues for enhancing drug development processes and patient care.


Cite this article:
Aakash Bairagi, Akhlesh K. Singhai, Ashish Jain. Artificial Intelligence: Future Aspects in the Pharmaceutical Industry an Overview. Asian Journal of Pharmacy and Technology. 2024; 14(3):237-6. doi: 10.52711/2231-5713.2024.00039

Cite(Electronic):
Aakash Bairagi, Akhlesh K. Singhai, Ashish Jain. Artificial Intelligence: Future Aspects in the Pharmaceutical Industry an Overview. Asian Journal of Pharmacy and Technology. 2024; 14(3):237-6. doi: 10.52711/2231-5713.2024.00039   Available on: https://ajptonline.com/AbstractView.aspx?PID=2024-14-3-8


REFERENCES:
1.    Krikorian, G.; Torreele, E. We Cannot Win the Access to Medicines Struggle Using the Same Thinking That Causes the Chronic Access Crisis. Health Hum. Rights. 2021; 23: 119–127.
2.    Chavda, V.P.; Vihol, D.; Patel, A.; Redwan, E.M.; Uversky, V.N. Introduction to Bioinformatics, AI, and ML for Pharmaceuticals. In Bioinformatics Tools for Pharmaceutical Drug Product Development; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2023; pp. 1–18.
3.    Sharma Bindu and Shalini Sharma a book on “Artificial Intelligence in Business, Management and Pharmaceutical Technology” First Edition March 2023 by Nex Gen Publications India, page No. 1-9: 33-42, 97-102.
4.    Wess, G.; Urmann, M.; Sickenberger, B. Medicinal Chemistry: Challenges and Opportunities. Angew. Chem. Int. Ed. 2001; 40: 3341–3350.
5.    Pu, L.; Naderi, M.; Liu, T.; Wu, H.C.; Mukhopadhyay, S.; Brylinski, M. EToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019; 20, 2.
6.    Chen, R.; Liu, X.; Jin, S.; Lin, J.; Liu, J. Machine learning for drug-target interaction prediction. Molecules 2018; 23, 2208.
7.    Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-
8.    Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Sci. 2018; 4: 268–276.
9.    Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; Von Lilienfeld, O.A.; Müller, K.R.; Tkatchenko, A. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 2015; 6: 2326–2331.
10.    Gawehn, E.; Hiss, J.A. Schneider, G. Deep Learning in Drug Discovery. Mol. Inform. 2016; 35: 3–14.
11.    Bannigan, P.; Aldeghi, M.; Bao, Z.; Häse, F.; Aspuru-Guzik, A.; Allen, C. Machine learning directed drug formulation development. Adv. Drug Deliv. Rev. 2021; 175: 113806.
12.    Patel Minesh. A Review on Importance of Artificial Intelligence in Alzheimer’s Disease and it’s Future Outcomes for Alzheimer’s Disease. Research Journal of Pharmacology and Pharmacodynamics. 10.52711/2321-5836.2022.00003, 2022; 14(1): no 14.
13.    Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; Von Lilienfeld, O.A.; Müller, K.R.; Tkatchenko. A. Machine learning Predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett., 2015; 6: 2326–2331.
14.    Santín, E.P.; Solana, R.R.; García, M.G.; Suárez, M.D.M.G.; Díaz, G.D.B.; Cabal, M.D.C.; Rojas, J.M.M.; Sánchez, J.I.L. Toxicity Prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021; 11: e1516.
15.    Jang, H.Y.; Song, J.; Kim, J.H.; Lee, H.; Kim, I.W.; Moon, B.; Oh, J.M. Machine learning-based quantitative prediction of drug Exposure in drug-drug interactions using drug label information. Npj Digit. Med. 2022; 5: 100.
16.    https://www.vlinkinfo.com/blog/role-of-ai-in-drug-discovery-and-healthcare/
17.    R. R. Kulkarni, P. S. Pawar. Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 10.52711/2231-5713.2023.00054, 2023; 13(4). 2-4.
18.    Sidhartha Jyoti Bora, Runa Chakravorty, Payal Das Gupta. The use of Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 10.52711/2231-5713.2023.00041. 2023; 13(3): 1-7.
19.    Sanjay S. Patel, Sparsh A. Shah.Explicating Artificial Intelligence: Applications in Medicine and Pharmacy: Asian Journal of Pharmacy and Technology. 2022; 12(4): 6-8.
20.    Yildirim O, Gottwald M, Schüler P, Michel MC. Opportunities and challenges for drug development: public–private partnerships, adaptive designs and big data. Front Pharmacol. 2016; 7: 461.
21.    Medarevic DP, Kleinebudde P, Djuris J, Djuric Z, Ibric S. Combined Application of mixture experimental design and artificial neural networks in The solid dispersion development. Drug DevInd Pharm. 2016; 42(3): 389-402.
22.    Barmpalexis P, Koutsidis I, Karavas E, Louk D. Development of PVP/PEG Mixtures as appropriate carriers for the preparation of drug solid dispersions By melt mixing technique and optimization of dissolution using artificial neural Networks. Eur J Pharm Biopharm. 2013; 85(3): 1219-31.
23.    Kumar KJ, Panpalia GM, Priyadarshini S. Application of artificial neural Networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion. Acta Pharm. 2011; 61(2): 249-56.
24.    Barmpalexis P, Koutsidis I, Karavas E, Louk D. Development of PVP/PEG Mixtures as appropriate carriers for the preparation of drug solid dispersions By melt mixing technique and optimization of dissolution using artificial neural Networks. Eur J Pharm Biopharm. 2013; 85(3): 1219-31.
25.    Podlogar F, Šibanc R, Gašperlin M. Evolutionary artificial neural networks As tools for predicting the internal structure of microemulsions. J Pharm Pharmaceut Sci., 2008; 11(1): 67-76.
26.    Agatonovic-Kustrin S, Glass BD, Wisch MH, Alany RG. Prediction of a Stable microemulsion formulation for the oral delivery of a combination of Antitubercular drugs using ANN methodology. Pharm Res., 2003; 20(11): 1760-5.
27.    Petrovic J, Ibric S, Betz G, Duric Z. Optimization of matrix tablets-controlled drug release using Elman dynamic neural networks and decision trees. Int J Pharm. 2012; 428(1-2): 57-67.
28.    Mandal U, Gowda V, Ghosh A, Bose A, Bhaumik U, Chatterjee B. Optimization of metformin HCl 500 mg sustained release matrix tablets using artificial Neural network (ANN) based on multilayer perceptrons (MLP) model. Chem Pharm Bull. 2008; 56(2): 150-5.
29.    Barmpalexis P, Kanaze FI, Kachrimanis K, Georgarakis E. Artificial neural Networks in the optimization of a nimodipine controlled release tablet Formulation. Eur J Pharm Biopharm. 2010; 74(2): 316-23.
30.    Zhang ZH, Wang Y, Wu WF, Zhao X, Sun XC, Wang HQ. Development of Glipizide push-pull osmotic pump-controlled release tablets by using expert System and artificial neural network. Yao Xue Xue Bao. 2012; 47(12): 1687-95.
31.    Patel A, Mehta T, Patel M, Patel K, Patel N. Design porosity osmotic tablet For delivering low and pH-dependent soluble drug using an artificial neural Network. Curr Drug Deliv. 2012; 9(5): 459-67.
32.    Chavda, V.P. Nanotherapeutics and Nanobiotechnology. In Applications of Targeted Nano Drugs and Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–13.
33.    Das, P.J.; Preuss, C.; Mazumder, B. Artificial Neural Network as Helping Tool for Drug Formulation and Drug Administration Strategies. In Artificial Neural Network for Drug Design, Delivery and Disposition. Elsevier: Amsterdam, The Netherlands. 2016; pp 263–276.
34.    Bhhatarai, B.; Walters, W.P.; Hop, C.E.C.A.; Lanza, G.; Ekins, S. Opportunities and Challenges Using Artificial Intelligence in ADME/Tox. Nat. Mater. 2019; 18: 418–422.
35.    Siepmann, J.; Siepmann, F. Modeling of Diffusion Controlled Drug Delivery. J. Control. Release 2012; 161: 351–362.
36.    Yang, S.Y.; Huang, Q.; Li, L.L.; Ma, C.Y.; Zhang, H.; Bai, R.; Teng, Q.Z.; Xiang, M.L.; Wei, Y.Q. An Integrated Scheme For Feature Selection and Parameter Setting in the Support Vector Machine Modeling and Its Application to the Prediction of Pharmacokinetic Properties of Drugs. Artif. Intell. Med. 2009; 46: 155–163.
37.    Yu, L.X.; Ellison, C.D.; Hussain, A.S. Predicting Human Oral Bioavailability Using in Silico Models. In Applications of Pharmacoki-Netic Principles in Drug Development. Springer: Boston, MA, USA, 2004; pp. 53–74.
38.    Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS ONE. 2013; 8: e61318.
39.    Lalitkumar K. Vora, Amol D. Gholap, Keshava Jetha, Raghu Raj Singh Thakur, Hetvi K. Solanki and Vivek P. Chavda. Review Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design.  MDPI, in 10 July 2023, page no. 12.
40.    Patil Prashad, Nrip K. Nripesh, Hajare Ashok, Hajare Digvijay, Patil K. Mahadev, Kanthe Rajesh, Gaikwad T. Anil. Artificial Intelligence and tools in pharmaceuticals: An Overview. Journal of Pharmacy and Technology. 2023; 16(4): 07.
41.    Koh, D.-M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E.; Kalpathi-Cramer, J.; Matos, C.; Martí-Bonmatí, L.; Miles, A.; Mun, S.K.; et al. Artificial Intelligence and Machine Learning in Cancer Imaging. Commun. Med. 2022; 2: 133.
42.    Malche, T.; Tharewal, S.; Tiwari, P.K.; Jabarulla, M.Y.; Alnuaim, A.A.; Hatamleh, W.A.; Ullah, M.A. Artificial Intelligence of Things- (AIoT-) Based Patient Activity Tracking System for Remote Patient Monitoring. J. Healthc. Eng. 2022, 2022, 8732213.
43.    Verma, D.; Singh, K.R.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of Things (IoT) in Nano-Integrated Wearable Biosensor Devices for Healthcare Applications. Biosens. Bioelectron. X 2022, 11, 100153.
44.    Nayak, S.; Kumar Das, R. Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation. In Service Robotics; Intech Open: London, UK, 2020.
45.    Bodenstedt, S.; Wagner, M.; Müller-Stich, B.P.; Weitz, J.; Speidel, S. Artificial Intelligence-Assisted Surgery: Potential and Challenges. Visc. Med. 2020; 36: 450–455.
46.    Babel, A.; Taneja, R.; Mondello Malvestiti, F.; Monaco, A.; Donde, S. Artificial Intelligence Solutions to Increase Medication Adherence in Patients with Non-Communicable Diseases. Front. Digit. Health 2021; 3: 669869.
47.    Ajay I. Patel, Pooja K. Khunti, Amit J. Vyas, Ashok B. Patel. Explicating Artificial Intelligence: Applications in Medicine and Pharmacy. Asian Journal of Pharmacy and Technology. 10.52711/2231-5713.2022.00061, page no. 2-7.
48.    Cui, P.; Wang, S. Application of Microfluidic Chip Technology in Pharmaceutical Analysis: A Review. J. Pharm. Anal. 2019; 9: 238–247.
49.    Tuntland, T.; Ethell, B.; Kosaka, T.; Blasco, F.; Zang, R.X.; Jain, M.; Gould, T.; Hoffmaster, K. Implementation of Pharmacokinetic And Pharmacodynamic Strategies in Early Research Phases of Drug Discovery and Development at Novartis Institute of Biomedical Research. Front. Pharmacol. 2014; 5: 174.
50.    Mager, D.E.; Woo, S.; Jusko, W.J. Scaling Pharmacodynamics from In Vitro and Preclinical Animal Studies to Humans. Drug Metab. Pharmacokinet. 2009; 24: 16–24.
51.    Chavda, V.P.; Ertas, Y.N.; Walhekar, V.; Modh, D.; Doshi, A.; Shah, N.; Anand, K.; Chhabria, M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front. Pharmacol. 2021; 12: 702611.
52.    Houy, N.; Le Grand, F. Optimal Dynamic Regimens with Artificial Intelligence: The Case of Temozolomide. PLoS ONE 2018; 13: E0199076.
53.    Karimian, G.; Petelos, E.; Evers, S.M.A.A. The ethical issues of the application of artificial intelligence in healthcare: A systematic Scoping review. AI Ethics 2022; 2: 539–551.
54.    Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Brahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022; 9: 266.
55.    Karimian, G.; Petelos, E.; Evers, S.M.A.A. The ethical issues of the application of artificial intelligence in healthcare: A systematic Scoping review. AI Ethics. 2022; 2: 539–551.
56.    Lakshmidevi Sigatapu, S. Sundar, K. Padmalatha, Sravya. K, D. Ooha, P. Uha Devi.Artificial Intelligence in Healthcare- An Overview. Asian Journal of Pharmacy and Technology. 10.52711/2231-5713.2023.00039. 2023; 13(3): 2-7.
57.    Praveen Tahilani, Hemant Swami, Gaurav Goyanar, Shivani Tiwari. The Era of Artificial Intelligence in Pharmaceutical Industries – A Review. Research Journal of Science and Technology.10.52711/2349-2988.2022.00030, 2022; 14(3): 7-8.
58.    Sahil Mahajan, Heemani Dave, Santosh Bothe, Debarshikar Mahpatra, Sandeep Sonawane, Sanjay Kshirsagar, Santosh Chhajed. Objective Monitoring of Cardiovascular Biomarkers using Artificial Intelligence (AI). Asian Journal of Pharmaceutical Research. 10.52711/2231-5691.2022.00038, 2022; 12(3): 8.
59.    Sanjay S. Patel, Sparsh A. Shah. Explicating Artificial Intelligence: Applications in Medicine and Pharmacy. Asian Journal of Pharmacy and Technology. 2022; 12(4): 6-8.
60.    Ajay I. Patel, Pooja K. Khunti, Amit J. Vyas, Ashok B. Patel. Explicating Artificial Intelligence: Applications in Medicine and Pharmacy. Asian Journal of Pharmacy and Technology, 10.52711/2231-5713.2022.00061, page no. 2-7.

Recomonded Articles:

Author(s): Hafsa, Asfa, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00001.0         Access: Open Access Read More

Author(s): Juveriya Fatima, Saniya Khan, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00009.5         Access: Open Access Read More

Author(s): Manohar D. Kengar, Rohit S. Howal, Dattatray B. Aundhakar, Amit V. Nikam, Priyajit S. Hasabe

DOI: 10.5958/2231-5713.2019.00010.2         Access: Open Access Read More

Author(s): Avinash B. Thalkari, Pawan N. Karwa, Chandrakant S. Gawli

DOI: 10.5958/2231-5713.2018.00017.X         Access: Open Access Read More

Author(s): Safa Mohammed Sadiq, Amtul Kareem, Nuha Rasheed, Abdul Saleem Mohammad

DOI: 10.5958/2231-5713.2017.00002.2         Access: Open Access Read More

Author(s): Amit Roy, Pushpa Prasad, Nirmala Gupta

DOI:         Access: Open Access Read More

Author(s): Anuradha A Sawant, S.K. Mohite.

DOI: 10.5958/2231-5713.2015.00014.8         Access: Open Access Read More

Author(s): Abhishek K. Sah, Manmohan Singh Jangdey, Sanjay J. Daharwal

DOI:         Access: Open Access Read More

Author(s): Abhijit Ray

DOI:         Access: Open Access Read More

Author(s): Ruchika Sharma, M. S. Ashawat, C. P. S Verma, Neha Kumari

DOI: 10.5958/2231-5713.2020.00039.2         Access: Open Access Read More

Author(s): Kanchan R. Pagar, Sarika V. Khandbahale

DOI: 10.5958/2231-5713.2019.00023.0         Access: Open Access Read More

Author(s): Nizamudeen.T, Ramanjaneyulu. J, Veeresh Babu. D, Narayana Swamy V.B

DOI: 10.5958/2231-5713.2015.00017.3         Access: Open Access Read More

Author(s): Chinmaya Keshari Sahoo, K. Satyanarayana, D. Venkata Ramana, Kanhu Charan Panda

DOI: 10.5958/2231-5713.2017.00034.4         Access: Open Access Read More

Author(s): Brijesh Kumar Duvey, Rohit Goyel, Bharat Parashar, Denesh Verma, Hitesh Dhameja, Dharmesh Sharma

DOI:         Access: Open Access Read More

Author(s): Mounika P Siridevi, Hemant T Kumar, Srinivasa Y Rao, Vara Prasad K Rao

DOI: 10.5958/2231-5713.2019.00035.7         Access: Open Access Read More

Author(s): Yogita. Chowdhary

DOI: 10.5958/2231-5713.2018.00002.8         Access: Open Access Read More

Author(s): Rutuja Saurabh Shah

DOI: 10.52711/2231-5713.2021.00035         Access: Open Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags