Author(s):
A.V.S. Ksheera Bhavani, A. Lakshmi Usha, Kayala Ashritha, E. Radha Rani
Email(s):
alakshmiusha@gmail.com
DOI:
10.52711/2231-5713.2021.00029
Address:
A.V.S. Ksheera Bhavani1, A. Lakshmi Usha2, Kayala Ashritha2, E. Radha Rani2
1Department of Pharmaceutics, Sri Venkateswara College of Pharmacy, Etcherla, Srikakulam.
2Department of Pharmaceutics, Maharajah’s College of Pharmacy, Vizianagaram, A.P., India.
*Corresponding Author
Published In:
Volume - 11,
Issue - 2,
Year - 2021
ABSTRACT:
Poor aqueous solubility and low oral bioavailability of an active pharmaceutical ingredient are the major constraints during the development of new product. Various approaches have been used for enhancement of solubility of poorly aqueous soluble drugs, but success of these approaches depends on physical and chemical nature of the molecules being developed. Co-crystallization of drug substances offers a great opportunity for the development of new drug products with superior physicochemical such as melting point, tabletability, solubility, stability, bioavailability and permeability, while preserving the pharmacological properties of the active pharmaceutical ingredient. Co-crystals are multi component systems in which two components, an active pharmaceutical ingredient and a coformer are present in stoichiometric ratio and bonded together with non-covalent interactions in the crystal lattice. This review article presents a systematic overview of pharmaceutical co-crystals, differences between co-crystals with salts, solvates and hydrates are summarized along with the advantages of co-crystals with examples. The theoretical parameters underlying the selection of coformers and screening of co-crystals have been summarized and different methods of co-crystal formation and evaluation have been explained.
Cite this article:
A.V.S. Ksheera Bhavani, A. Lakshmi Usha, Kayala Ashritha, E. Radha Rani. Review on Pharmaceutical Co-Crystals and Design Strategies. Asian Journal of Pharmacy and Technology. 2021; 11(2):175-0. doi: 10.52711/2231-5713.2021.00029
Cite(Electronic):
A.V.S. Ksheera Bhavani, A. Lakshmi Usha, Kayala Ashritha, E. Radha Rani. Review on Pharmaceutical Co-Crystals and Design Strategies. Asian Journal of Pharmacy and Technology. 2021; 11(2):175-0. doi: 10.52711/2231-5713.2021.00029 Available on: https://ajptonline.com/AbstractView.aspx?PID=2021-11-2-14
REFERENCES:
1. Babu NJ and Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des 2011;11: 2662-79.
2. Fong SYK, Ibisogly A, Bauer-Brandl A. Solubility enhancement of BCS class-II drug by solid phospholipid dispersions: Spray drying versus freeze-drying. Int J Pharm 2015;496: 382-91.
3. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal 2014;96: 10-20.
4. Hisada N, Takano R, Takata N, Shiraki K, Ueto T, Tanida S, et al. Characterizing the dissolution profile of supersaturable salts, cocrystals and solvates to enhance in vivo oral absorption. Eur J Pharm Biopharm 2016;103: 192-9.
5. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012;2012: 195727.
6. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 1990;23: 120-6.
7. Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem 1991:95; 4601-10.
8. Desiraju GR. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl 34: 2311-27.
9. Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phase. Do pharmaceutical cocrystals represent a new path to improved medicines? Chem Commun 2004: 1889-96.
10. Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun 2016;52: 640-55.
11. Braga D, Grepioni F, Maini L, Prosperi S, Gobetto R, Chierotti MR. From unexpected reactions to a new family of ionic cocrystals: the case of barbituric acid with alkali bromides and caesium iodide. Chem Commun 2010:46; 7715-7.
12. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm 2011;419: 1-11.
13. Aakeroy CB, Salmon DJ. Building cocrystals with molecular sense and supramolecular sensibility. Cryst Eng Comm 2005;7(72): 439-48.
14. Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical sciences. Drug Discov Today 2008;13: 440-46.
15. Horst JHT, Deji MA, Cains PW. Discovering new cocrystals. Cryst Growth Des 2009;9(3): 1531-7.
16. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 2009;9: 2950-67.
17. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts and cocrystals: What’s in a name? Cryst Growth Des 2012:12: 2147-52.
18. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm281764.pdf.
19. Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm 2005:7; 551-62.
20. Childs SL, Stahly GP, Park A. The salt-cocrystals continuum: The influence of crystal structure on ionization state. Mol Pharm 2007:4; 323-38.
21. Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 2004:56; 275-300.
22. Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical cocrystals. J Pharm Sci 2006;95: 499-516.
23. Blagden N, Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007:59; 617-30.
24. Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceuticals cocrystals: a review of solvent free manufacturing technologies. Chem Commun 2016;52: 8772-86.
25. Salole EG, Al-Sarraj FA. Spiranolactone crystal forms. Drug Dev Ind Pharm 1985:11; 855-64.
26. Madusanka N, Eddleston M, Arhangelskis M, Jones W. Polymorphs, hydrates and solvates of a co-crystal of caffeine with anthranilic acid. Acta Crystallogr B Struct Sci Cryst Eng Mater 2014:70; 72-80.
27. Sekhon BS. Pharmaceutical cocrystals - An update. Chem Inform 2013; 44:62.
28. Bolla G, Nangia A. Pharmaceutical cocrystals: walking the talk. Chem Commun 2016:52; 8342-60.
29. Abourahma H, Cocuzza DS, Melendez J, Urban JM. Pyrazinamide cocrystals and the search for polymorphs. CrystEngComm 2011;13: 1-22.
30. Batisai E, Ayamine A, Kilinkissa OEY, Bathori N. Melting point-solubility-structure correlations in multicomponent crystal containing fumaric or adipic acid. CrystEngComm 2014:16; 9992-8.
31. Stanton MK, Bak A. Physicochemical properties of pharmaceutical cocrystals: A case study of ten AMG 517 cocrystals. Cryst Growth Des 2008:8; 3856-62.
32. Aakeroy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behaviour of an anticancer drug. J Am Chem Soc 2009:131; 17048-9.
33. Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Walsh B, Rodriguez-Hornedo RD, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Crystal Growth Des 2003:3;909-19.
34. Maeno Y, Fukami T, Kawahata M, Yamaguchi K, Tagami T, Ozeki T, et al. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int J Pharm 2014:473;179-86.