Author(s): Anshul Sharma, Keshav Dhiman, Anshul Sharma, Kamya Goyal, Vinay Pandit, M. S. Ashawat, Shammy Jindal


DOI: 10.52711/2231-5713.2022.00052   

Address: Anshul Sharma1, Keshav Dhiman1, Anshul Sharma1, Kamya Goyal2, Vinay Pandit1, M. S. Ashawat1, Shammy Jindal1*
1Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog Jawalaji Dist - Kangra (H.P.) India.
2Department of Pharmaceutical Analysis and Quality Assurance, Laureate Institute of Pharmacy, Kathog Jawalaji Dist - Kangra (H.P.) India.
*Corresponding Author

Published In:   Volume - 12,      Issue - 4,     Year - 2022

Liposomes are the nano-scale bilayer structure of phospholipid used as a carrier for a Large Variety of drugs. Both lipophilic and hydrophilic drugs can encapsulate into the liposome and delivered to the body. The purpose behind the preparation of liposomes is to reduce the side effects associated with systemic delivery of drugs as well as it also helps in the protection of biodegradable drugs and molecules such as protein and peptides from body enzymes and fluids. Other than these advantages liposome also have high skin permeation due to structural similarities with the stratum corneum and therefore can be used for the topical delivery of drugs. The various types of liposomes and their application in their marketed products are discussed below in the article.

Cite this article:
Anshul Sharma, Keshav Dhiman, Anshul Sharma, Kamya Goyal, Vinay Pandit, M. S. Ashawat, Shammy Jindal. Application of Nanocarrier in Drug development with special Emphasis on Liposomes: A Review. Asian Journal of Pharmacy and Technology; 12(4):320-8. doi: 10.52711/2231-5713.2022.00052

Anshul Sharma, Keshav Dhiman, Anshul Sharma, Kamya Goyal, Vinay Pandit, M. S. Ashawat, Shammy Jindal. Application of Nanocarrier in Drug development with special Emphasis on Liposomes: A Review. Asian Journal of Pharmacy and Technology; 12(4):320-8. doi: 10.52711/2231-5713.2022.00052   Available on:

1.    Gomez-Hens A, Fernández-Romero JM. The role of liposomes in analytical processes. TrAC Trends Anal Chem. 2005;24(1):9–19.
2.    Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–65.
3.    Manconi M, Caddeo C, Sinico C, Valenti D, Mostallino MC, Biggio G, et al. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle–skin interaction. Eur J Pharm Biopharm. 2011;78(1):27–35.
4.    Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349.
5.    Akhtar N. Vesicles: a recently developed novel carrier for enhanced topical drug delivery. Curr Drug Deliv. 2014;11(1):87–97.
6.    Jindal S, Awasthi R, Singare D, Kulkarni GT. Preparation and in vitro evaluation of Tacrolimus loaded liposomal vesicles by two methods: A comparative study. J Res Pharm. 2021;25(1):34–41.
7.    Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int nano Lett. 2017;7(2):91–122.
8.    Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett. 2018;13(1):1–17.
9.    Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193.
10.    Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics. Clin Pharmacokinet. 2003;42(13):1089–105.
11.    Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–8.
12.    Nakamura H, Jun F, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2015;12(1):53–64.
13.    Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol drug Deliv. 2014;1:1–50.
14.    Ranade V V. Drug delivery systems. 1. Site‐specific drug delivery using liposomes as carriers. J Clin Pharmacol. 1989;29(8):685–94.
15.    Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736–51.
16.    Rahimpour Y, Hamishehkar H. Liposomes in cosmeceutics. Expert Opin Drug Deliv. 2012;9(4):443–55.
17.    Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv. 2010;7(11):1303–27.
18.    Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines. 2014;2(3):515–36.
19.    Gregory AE, Williamson D, Titball R. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13.
20.    Tandrup Schmidt S, Foged C, Smith Korsholm K, Rades T, Christensen D. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. 2016;8(1):7.
21.    Khalaj‐Hedayati A, Chua CLL, Smooker P, Lee KW. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza Other Respi Viruses. 2020;14(1):92–101.
22.    Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.
23.    Singh RP, Gangadharappa H V, Mruthunjaya K. Phospholipids: Unique carriers for drug delivery systems. J Drug Deliv Sci Technol. 2017;39:166–79.
24.    Paltauf F, Hermetter A. Phospholipids—Natural, semisynthetic, synthetic. In: Phospholipids. Springer; 1990. p. 1–12.
25.    Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742–61.
26.    Silvius JR. Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta (BBA)-Biomembranes. 2003;1610(2):174–83.
27.    Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol cell Biol. 2018;19(5):281–96.
28.    Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 2019;593(17):2428–51.
29.    Iscaro A, Howard NF, Muthana M. Nanoparticles: properties and applications in cancer immunotherapy. Curr Pharm Des. 2019;25(17):1962–79.
30.    P Samy R, Gopalakrishnakone P, G Stiles B, S Girish K, N Swamy S, Hemshekhar M, et al. Snake venom phospholipases A2: a novel tool against bacterial diseases. Curr Med Chem. 2012;19(36):6150–62.
31.    Jindal S, Awasthi R, Singhare D, Kulkarni GT. Topical delivery of Tacrolimus using liposome containing gel: An emerging and synergistic approach in management of psoriasis. Med Hypotheses. 2020;142:109838.
32.    Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004;10(24):2981–9.
33.    Panahi Y, Farshbaf M, Mohammadhosseini M, Mirahadi M, Khalilov R, Saghfi S, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif cells, nanomedicine, Biotechnol. 2017;45(4):788–99.
34.    Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif cells, nanomedicine, Biotechnol. 2016;44(1):381–91.
35.    Jindal S, Kumar A, Goyal K, Awasthi R, Kulkarni GT. Lipid Nanocarriers for Dermal Delivery of Lutein. In: Nanomedicine for Bioactives. Springer; 2020. p. 341–66.
36.    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
37.    Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. asian J Pharm Sci. 2014;9(4):176–82.
38.    Mozafari MR. Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett. 2005;10(4):711.
39.    Paternostre MT, Roux M, Rigaud JL. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium. Biochemistry. 1988;27(8):2668–77.
40.    Edwards K, Johnsson M, Karlsson G, Silvander M. Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J. 1997;73(1):258–66.
41.    Kumar S, Kaur N, Mithu VS. Amphiphilic ionic liquid induced fusion of phospholipid liposomes. Phys Chem Chem Phys. 2020;22(43):25255–63.
42.    Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. In: Liposomes. Springer; 2017. p. 17–22.
43.    Fernández-García R, Lalatsa A, Statts L, Bolás-Fernández F, Ballesteros MP, Serrano DR. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int J Pharm. 2020;573:118817.
44.    Varona S, Martin A, Cocero MJ. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions. Ind Eng Chem Res. 2011;50(4):2088–97.
45.    Marsden HR, Gabrielli L, Kros A. Rapid preparation of polymersomes by a water addition/solvent evaporation method. Polym Chem. 2010;1(9):1512–8.
46.    Zhang X, Coleman AC, Katsonis N, Browne WR, Van Wees BJ, Feringa BL. Dispersion of graphene in ethanol using a simple solvent exchange method. Chem Commun. 2010;46(40):7539–41.
47.    Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon N Y. 2012;50(1):3–33.
48.    Ming-Jie LI, ZHANG H-Y, Xiao-Zhe LIU, Chun-Yan CUI, Zhi-Hong SHI. Progress of extraction solvent dispersion strategies for dispersive liquid-liquid microextraction. Chinese J Anal Chem. 2015;43(8):1231–40.
49.    Chen J, Brooks III CL, Khandogin J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol. 2008;18(2):140–8.
50.    Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci. 1978;75(9):4194–8.
51.    Mertins O, Sebben M, Pohlmann AR, da Silveira NP. Production of soybean phosphatidylcholine–chitosan nanovesicles by reverse phase evaporation: a step by step study. Chem Phys Lipids. 2005;138(1–2):29–37.
52.    Taylor KMG, Taylor G, Kellaway IW, Stevens J. Drug entrapment and release from multilamellar and reverse-phase evaporation liposomes. Int J Pharm. 1990;58(1):49–55.
53.    Trucillo P, Campardelli R, Reverchon E. Liposomes: From bangham to supercritical fluids. Processes. 2020;8(9):1022.
54.    Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20(3):179–219.
55.    Naik S, Patel D, Surti N, Misra A. Preparation of PEGylated liposomes of docetaxel using supercritical fluid technology. J Supercrit Fluids. 2010;54(1):110–9.
56.    Xia F, Hu D, Jin H, Zhao Y, Liang J. Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocoll. 2012;26(2):456–63.
57.    Booysen E. Characterization of a novel antibiotic isolated from Xenorhabdus khoisanae and encapsulation of vancomycin in nanoparticles. Stellenbosch: Stellenbosch University; 2018.
58.    Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids. 2011;57(2):162–74.
59.    Kompella UB, Koushik K. Preparation of drug delivery systems using supercritical fluid technology. Crit Rev Ther Drug Carr Syst. 2001;18(2).
60.    Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater Polym Biomater. 2018;67(6):383–400.
61.    van Swaay D, DeMello A. Microfluidic methods for forming liposomes. Lab Chip. 2013;13(5):752–67.
62.    Yu B, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009;465:129–41.
63.    Amrani S. Microfluidic platform for the fabrication and loading of nanoscale liposomes by 2D hydrodynamic flow focusing. McGill University (Canada); 2018.
64.    Cheung C. Preparation of Multifunctional Nanoparticles Using Microfluidics. Queen’s University Belfast; 2020.
65.    Shum HC, Thiele J, Kim S-H. Microfluidic fabrication of vesicles. Adv Transp Phenom 2011. 2014;1–28.
66.    Hu PC, Li S, Malmstadt N. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl Mater Interfaces. 2011;3(5):1434–40.
67.    Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater. 2001;13(12):4395–8.
68.    Ding X, Zeng D, Zhang S, Xie C. C-doped WO3 microtubes assembled by nanoparticles with ultrahigh sensitivity to toluene at low operating temperature. Sensors Actuators B Chem. 2011;155(1):86–92.
69.    Li Q, Wang X, Ma S, Zhang Y, Han X. Electroformation of giant unilamellar vesicles in saline solution. Colloids Surfaces B Biointerfaces. 2016;147:368–75.
70.    Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V. Production of isolated giant unilamellar vesicles under high salt concentrations. Front Physiol. 2017;8:63.
71.    Kuribayashi K, Tresset G, Coquet P, Fujita H, Takeuchi S. Electroformation of giant liposomes in microfluidic channels. Meas Sci Technol. 2006;17(12):3121.
72.    Kanha N, Regenstein JM, Surawang S, Pitchakarn P, Laokuldilok T. Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions. Food Chem. 2021;340:127950.
73.    Kim TH, Park TG. Critical effect of freezing/freeze-drying on sustained release of FITC-dextran encapsulated within PLGA microspheres. Int J Pharm. 2004;271(1–2):207–14.
74.    Supramaniam P, Ces O, Salehi-Reyhani A. Microfluidics for artificial life: techniques for bottom-up synthetic biology. Micromachines. 2019;10(5):299.
75.    Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459.
76.    Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298–415.
77.    Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–73.
78.    Jadhav SM, Morey P, Karpe M, Kadam V. Novel vesicular system: an overview. J Appl Pharm Sci. 2012;2(1):193–202.
79.    Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. Aaps Pharmscitech. 2014;15(4):822–33.
80.    Alam A, Farooq U, Singh R, Dubey VP, Kumar S, Kumari R, et al. Chemotherapy treatment and strategy schemes: A review. Open Access J Toxicol. 2018;2(5):555600.
81.    Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
82.    Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials. 2018;156:217–37.
83.    Lila ASA, Ishida T. Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull. 2017;40(1):1–10.
84.    Sharma G, Anabousi S, Ehrhardt C, Ravi Kumar MN V. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J Drug Target. 2006;14(5):301–10.
85.    Singh N, Sondhi S, Sharma S, Singh D, Koundal V, Goyal K, et al. Treatment of Skin Cancer by Topical Drug Delivery of Nanoparticles: A Review. Res J Pharm Technol. 2021;14(10):5589–98.
86.    Tamura A, Nagasaki Y. Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine. 2010;5(7):1089–102.
87.    Mohammadinejad R, Dehshahri A, Madamsetty VS, Zahmatkeshan M, Tavakol S, Makvandi P, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release. 2020;325:249–75.
88.    Jindal S, Awasthi R, Singare D, Kulkarni GT. POTENTIAL OF HERBAL NANOCARRIER FORMULATION FOR THE TREATMENT OF PSORIASIS. Int J Pharm Life Sci. 2019;10(6).
89.    Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.
90.    Zhou J, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides. 2011;21(1):1–10.
91.    Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. 2008;
92.    Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Brazilian J Med Biol Res. 1999;32(2).
93.    Nam G, Choi Y, Kim GB, Kim S, Kim SA, Kim I. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater. 2020;32(51):2002440.
94.    Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, et al. Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci. 2014;17(3):401–26.
95.    García A, De Sanctis JB. An overview of adjuvant formulations and delivery systems. Apmis. 2014;122(4):257–67.
96.    Du Y-F, Chen M, Xu J-R, Luo Q, Lu W-L. Preparation and Characterization of DNA Liposomes Vaccine. Liposome-Based Drug Deliv Syst. 2021;259–75.
97.    Sharma A, Anghore D, Awasthi R, Kosey S, Jindal S, Gupta N, et al. A review on current carbon nanomaterials and other nanoparticles technology and their applications in biomedicine. World J Pharm Pharm Sci. 2015;4(12):1088–113.
98.    Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975.
99.    Gowda GAN, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn. 2008;8(5):617–33.
100.    Papanicolaou GN, Traut HF. Diagnosis of uterine cancer by the vaginal smear. New York. 1943;46.
101.    Mulder WJM, Strijkers GJ, Griffioen AW, van Bloois L, Molema G, Storm G, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug Chem. 2004;15(4):799–806.
102.    Mukundan Jr S. Ghaghada KB, Badea CT, Kao CY, Hedlund LW, Provenzale JM, Johnson GA, Chen E, Bellamkonda RV, Annapragada A. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J Roentgenol. 2006;186(2):300–7.
103.    Costabile RA, Choyke PL, Frank JA, Girton ME, Diggs R, Billups KL, et al. Dynamic enhanced magnetic resonance imaging of testicular perfusion in the rat. J Urol. 1993;149(5):1195–7.
104.    Patravale VB, Mandawgade SD. Novel cosmetic delivery systems: an application update. Int J Cosmet Sci. 2008;30(1):19–33.
105.    Budai L, Kaszás N, Gróf P, Lenti K, Maghami K, Antal I, et al. Liposomes for topical use: A physico-chemical comparison of vesicles prepared from egg or soy lecithin. Sci Pharm. 2013;81(4):1151–66.
106.    Al-Jamal W, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44(10):1094–104.
107.    Svenson S. Theranostics: are we there yet? Mol Pharm. 2013;10(3):848–56.
108.    Mukherjee A, Paul M, Mukherjee S. Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers (Basel). 2019;11(5):597.
109.    Yin W, Kimbrough CW, Gomez-Gutierrez JG, Burns CT, Chuong P, Grizzle WE, et al. Tumor specific liposomes improve detection of pancreatic adenocarcinoma in vivo using optoacoustic tomography. J Nanobiotechnology. 2015;13(1):1–11.
110.    Gurka MK, Pender D, Chuong P, Fouts BL, Sobelov A, McNally MW, et al. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control release. 2016;231:60–7.
111.    Wallace TL, Larson JL, Bazemore SA, Wilson CW, Cossum PA. The nonclinical safety evaluation of the anticancer drug ATRAGEN®(Liposomal all-trans-retinoic acid). Int J Toxicol. 2000;19(1):33–42.
112.    Brogden RN, Goa KL, Coukell AJ. Amphotericin-B colloidal dispersion. A review of its use against systemic fungal  infections and visceral leishmaniasis. Drugs. 1998 Sep;56(3):365–83.
113.    Sharma M, Joshi J, Chouhan NK, Talati MN, Vaidya S, Kumar A. Liposome-A Comprehensive Approach for Researchers. In: Molecular Pharmacology. IntechOpen; 2020.
114.    Chhikara BS, Parang K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin Drug Deliv. 2010;7(12):1399–414.
115.    Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care. 1996;7(2):55–9.
116.    Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J Nanomater. 2013;2013.
117.    Peravali R, Brock R, Bright E, Mills P, Petty D, Alberts J. Enhancing the Enhanced Recovery Program in Colorectal Surgery-use of extended-release epidural morphine (DepoDur®). Ann Coloproctol. 2014;30(4):186.
118.    Estradiol-topical--Novavax: Estrasorb. Drugs R D. 2003;4(1):49–51.
119.    Lea AP, Balfour JA. Virosomal hepatitis A vaccine (strain RG-SB). BioDrugs. 1997;7(3):232–48.
120.    Xiong Y-Q, Kupferwasser LI, Zack PM, Bayer AS. Comparative efficacies of liposomal amikacin (MiKasome) plus oxacillin versus conventional amikacin plus oxacillin in experimental endocarditis induced by Staphylococcus aureus: microbiological and echocardiographic analyses. Antimicrob Agents Chemother. 1999;43(7):1737–42.
121.    Dhandapani NV, Thapa A, Sandip G, Shrestha A, Shrestha N, Bhattarai RS. Liposomes as novel drug delivery system: A comprehensive review. 2013;
122.    Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53.
123.    Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW. Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother. 1998;42(6):1412–6.
124.    Passero Jr FC, Grapsa D, Syrigos KN, Saif MW. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther. 2016;16(7):697–703.

Recomonded Articles:

Author(s): Kanchan R. Pagar, Sarika V. Khandbahale

DOI: 10.5958/2231-5713.2019.00023.0         Access: Open Access Read More

Author(s): Jangam Payal R, Thombre Nilima A, Gaikwad Pallavi N

DOI: 10.5958/2231-5713.2017.00027.7         Access: Open Access Read More

Author(s): Rutvik P. Parmar, Ramesh B. Parmar

DOI:         Access: Open Access Read More

Author(s): S. Sathish Kumar, G. Melchias

DOI:         Access: Open Access Read More

Author(s): Sweetha G., Sangeetha B., Prabhu S.

DOI:         Access: Open Access Read More

Author(s): Deepak Prashar, Sanjay Kumar, Surender Sharma, Pankaj Thakur, Luder Mani

DOI:         Access: Open Access Read More

Author(s): Dattatraya M. Shinkar, Pinak S. Paralkar, R.B. Saudagar

DOI: 10.5958/2231-5713.2015.00033.1         Access: Open Access Read More

Author(s): Karthick J., Praveen Kumar P.K., SujathaLoganathan P.L.

DOI:         Access: Open Access Read More

Author(s): Jyotsna R., Malavikha Rajiv Moorthy, A. Neeha Dev

DOI:         Access: Open Access Read More

Author(s): Raditya Weka Nugraheni, Helmy Yusuf, Dwi Setyawan

DOI: 10.5958/2231-5713.2018.00040.5         Access: Open Access Read More

Author(s): Sonali Vijaykumar Magdum, Sachinkumar V. Patil, Shitalkumar S. Patil

DOI: 10.5958/2231-5713.2017.00037.X         Access: Open Access Read More

Author(s): Raditya Weka Nugraheni, Helmy Yusuf, Dwi Setyawan

DOI: 10.5958/2231-5713.2017.00035.6         Access: Open Access Read More

Author(s): Swapna Velivela, Nikunja B Pati, B. Ravindra Babu

DOI: 10.52711/2231-5713.2021.00033         Access: Open Access Read More

Author(s): Ritesh Kumar Dash, Deepak Sarangi, Rupak Kumar Swain, Satyajeet Behera

DOI: 10.52711/2231-5713.2022.00056         Access: Closed Access Read More

Author(s): Anshul Sharma, Keshav Dhiman, Anshul Sharma, Kamya Goyal, Vinay Pandit, M. S. Ashawat, Shammy Jindal

DOI: 10.52711/2231-5713.2022.00052         Access: Closed Access Read More

Author(s): Kishan Pal Singh, Santosh Dighe

DOI: 10.52711/2231-5713.2023.00048         Access: Closed Access Read More

Author(s): Akshit Katnauria, Abhishek, Happy Choudhary, Kapil Kumar Verma

DOI: 10.52711/2231-5713.2024.00028         Access: Closed Access Read More

Author(s): Abhishek, Akshit Katnauria, Happy, Kapil Kumar Verma

DOI: 10.52711/2231-5713.2024.00030         Access: Closed Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 

Recent Articles