Author(s): Jayhind L Bharti, Anjali M Wankhade, J V Vyas, Vivek V Paithankar, Pratiksha R Morey

Email(s): jaybharti448@gmail.com

DOI: 10.52711/2231-5713.2023.00022   

Address: Jayhind L Bharti*, Anjali M Wankhade, J V Vyas, Vivek V Paithankar, Pratiksha R Morey
Department of Pharmacology, Vidyabharati College of Pharmacy, Amravati, Maharashtra, India – 444602.
*Corresponding Author

Published In:   Volume - 13,      Issue - 2,     Year - 2023


ABSTRACT:
The second-leading cause of cancer-related death in women is breast cancer, which is the most prevalent disease among females. The majority of breast cancers (about 70%) fall under the luminal A subtype, which is indicated by the presence of the estrogen receptor (ER +) but not by the amplified human epidermal growth factor receptor (HER2). The understanding of breast cancer has advanced with the identification of various intrinsic subtypes. This review focuses on the landscape of the luminal A subtype, its standard treatment regimen, under process clinical trial and the novel treatment regimens of luminal A breast cancer. OTUD7B oestrogen receptor stabiliser, BTG2 as a tumour target, CCAT2 in Regulating Luminal Subtype of Breast Cancer, and miRNA Expression Profiles in Luminal A Breast Cancer are some of the newer therapies for luminal A breast cancer that are discussed in this review. The ideal course of treatment for people with luminal A-subtype cancers is still unknown in the age of precision medicine. Our ability to actualize the promise of precision medicine—the correct treatment, for the right patient, at the right time—will be made possible by the development of tumour panels to examine these validated biomarkers. These unique tumour traits will become more significant in deciding the best course of treatment for each individual patient in the current era of precision medicine, where the aim is to neither overtreat nor undertreat patients. However, more thorough investigation is required in this area.


Cite this article:
Jayhind L Bharti, Anjali M Wankhade, J V Vyas, Vivek V Paithankar, Pratiksha R Morey. A Review on Current and Novel Treatment Regimen on Luminal A Breast Cancer. Asian Journal of Pharmacy and Technology. 2023; 13(2):115-2. doi: 10.52711/2231-5713.2023.00022

Cite(Electronic):
Jayhind L Bharti, Anjali M Wankhade, J V Vyas, Vivek V Paithankar, Pratiksha R Morey. A Review on Current and Novel Treatment Regimen on Luminal A Breast Cancer. Asian Journal of Pharmacy and Technology. 2023; 13(2):115-2. doi: 10.52711/2231-5713.2023.00022   Available on: https://ajptonline.com/AbstractView.aspx?PID=2023-13-2-8


REFERENCES:
1.    Ravi Mehrotra and Kavita Yadav, Breast cancer in India: Present scenario and the challenges ahead. 2022 Mar 24; 13(3): 209–218.
2.    Mansfield C.M. A review of the etiology of breast cancer. J. Natl Med. Assoc. (1993) 85 217.
3.    Rebecca L Siegel 1, Kimberly D Miller 1, Hannah E Fuchs, et al. Cancer statistics, 2022. CA Cancer J Clin.2022 Jan; 72(1):7-33.
4.    Heim E, Valach L, Schafner L. Coping and psychosocial adaptation: longitudinal efects over time and stages in breast cancer. Psychosom Med. 1997; 59:408–18
5.    Bednarek A, Sahin A, Brenner A, Johnston D, Aldaz C. Analysis of telomerase activity levels in breast cancer: positive detection at the in-situ breast carcinoma stage. Clin Cancer Res. 1997; 3(1):11–6.
6.    Segal R, Evans W, Johnson D, Smith J, Colletta S, Gayton J. Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 2001; 19:657–65
7.    Moran M, Schnitt S, Giuliano A, Harris J, Khan S, Horton J. Society of surgical oncology–American society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Rad Oncol Biol Phys. 2014; 88:553–64.
8.    Jacquillat C, Weil M, Baillet F, Borel C, Auclerc G, Maublanc M. Results of neoadjuvant chemotherapy and radiation therapy in the breast-conserving treatment of 250 patients with all stages of infiltrative breast cancer. Cancer. 1990; 66:119–29
9.    Neuman H, Morrogh M, Gonen M. Stage IV breast cancer in the Era of targeted therapy, does surgery of the primary tumor matter. Cancer. 2015; 116:1226–33
10.    Bevers TB, Helvie M, Bonaccio E, Calhoun KE, Daly MB, Farrar WB, Garber JE, Gray R, Greenberg CC, Greenup R et al (2018) Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 16: 1362–1389
11.    Jenni Shengs Types of Breast Cancer. [Internet]. [cited 2022 jan 29];188(18): Available from: https://www.breastcancer.org/types
12.    Cantini, L.; Bertoli, G.; Cava, C.; Dubois, T.; Zinovyev, A.; Caselle, M.; Castiglioni, I.; Barillot, E.; Martignetti, L. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res. 2019, 47, 2205–2215
13.    Peppercorn, J.; Perou, C.M.; Carey, L.A. Molecular subtypes in breast cancer evaluation and management: Divide and conquer. Cancer Invest. 2008, 26, 1–10
14.    Nadia Harbeck1, Frédérique Penault-Llorca, Javier Cortes, et al. Breast cancer. Article in Nature Reviews Disease Primers · December 2019 DOI: 10.1038/s41572-019-0111-2
15.    Michail Ignatiadis, Christos Sotiriou. Luminal breast cancer: from biology to treatment.  Nat Rev Clin Oncol. 2013 Sep; 10(9):494-506.
16.    Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, Cronin KA. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014 Apr 28; 106(5).
17.    Dowsett M, Goldhirsch A, Hayes DF, Senn HJ, Wood W, Viale G. International web-based consultation on priorities for translational breast cancer research. Breast Cancer Res. 2007; 9:1–7.
18.    Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, Harbeck N, Aguilar Lopez B, Barrios CH, Bergh J, et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4) Ann Oncol. 2018; 29:1634–1657.
19.    Rasha F, Sharma M, Pruitt K. Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol. 2021; 532(111322).
20.    Mavratzas A, Marme F. Treatment of luminal metastatic breast cancer beyond CDK4/6 inhibition: Is there a standard of care in clinical practice? Breast Care (Basel) 2021; 16:115–128.
21.    American Cancer Society. Breast Cancer Facts & Figures 2019-2020. Atlanta: American Cancer Society, Inc. 2019.
22.    Ignatiadis M, Sotiriou C. Luminal breast cancer: from biology to treatment. Nat Rev Clin Oncol. 2013; 10(9):494-506.
23.    Liu FF, Shi W, Done SJ, et al. Identification of a low-risk luminal a breast cancer cohort that may not benefit from breast radiotherapy. JCO. 2015; 33(18):2035-2040.
24.    Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in Breast Cancer Survival by Molecular Subtypes in the United States. Cancer Epidemiol Biomarkers Prev. 2018; 28:28
25.    Burstein HJ, Lacchetti C, Anderson H, et al. Adjuvant Endocrine Therapy for Women with Hormone Receptor-Positive Breast Cancer: ASCO Clinical Practice Guideline Focused Update. J Clin Oncol. 2019; 37(5):423-438.
26.    Wheeler SB, Spencer J, Pinheiro LC, et al. Endocrine Therapy Nonadherence and Discontinuation in Black and White Women. J Natl Cancer Inst. 2019; 111(5):498-508.
27.    Farias AJ, Du XL. Association Between Out-Of-Pocket Costs, Race/Ethnicity, and Adjuvant Endocrine Therapy Adherence Among Medicare Patients with Breast Cancer. J Clin Oncol. 2017; 35(1):86-95.
28.    Feng, Q.; O’Malley, B.W. Nuclear receptor modulation—Role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids 2014, 90, 39–43.
29.    Pinkerton, J.V.; Conner, E.A. Beyond estrogen: Advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric J. Int. Menopause Soc. 2019, 22, 140–147.
30.    Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 1996; 14: 2738–2746.
31.    Fisher B, Dignam J, Bryant J, et al. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst 2001; 93: 684–690.
32.    Gray RG, Rea D, Handley K, et al. aTTom: long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. ASCO Meet Abstr 2013; 31(Suppl. 18): 5.
33.    Davies C, Godwin J, Gray R, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771–784.
34.    Clarke, R.; Tyson, J.J.; Dixon, J.M. Endocrine resistance in breast cancer—An overview and update. Mol. Cell. Endocrinol. 2015, 418 Pt 3, 220–234.
35.    Cuzick, J.; Sestak, I.; Baum, M.; Buzdar, A.; Howell, A.; Dowsett, M.; Forbes, J.F. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 10-year analysis of the ATAC trial. Lancet. Oncol. 2010, 11, 1135–1141.
36.    Goss PE, Ingle JN, Martino S, et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 2005; 97: 1262–1271.
37.    Mamounas EP, Jeong JH, Lawrence Wickerham D, et al. Benefit from exemestane as extended adjuvant therapy after 5 years of adjuvant tamoxifen: intention-to-treat analysis of the national surgical adjuvant breast and bowel project B-33 trial. J Clin Oncol 2008; 26: 1965–1971.
38.    Jakesz R, Greil R, Gnant M, et al. Extended adjuvant therapy with anastrozole among postmenopausal breast cancer patients: results from the randomized Austrian breast and colorectal cancer study group trial 6a. J Natl Cancer Inst 2007; 99: 1845–1853.
39.    Gomis RR, Gawrzak S. Tumor cell dormancy. Mol Oncol 2017; 11: 62–78.
40.    Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem. 2019, 177, 116–143
41.    Baumann, C.K.; Castiglione-Gertsch, M. Estrogen Receptor Modulators and Down Regulators. Drugs 2007, 67, 2335–2353.
42.    ClinicalTrials.gov. Available from https://clinicaltrials.gov/ct2/results?cond=luminal+A+breast+cancer&draw=1&rank=36#rowId35
43.    Heying Xie, Yuefan Guo, Zhen Xu et al. Dual Function of CCAT2 in Regulating Luminal Subtype of Breast Cancer Depending on the Subcellular Distribution Cancers 2023, 15, 538.
44.    Xu, Z.; Liu, C.; Zhao, Q.; Lü, J.; Ding, X.; Luo, A.; He, J.; Wang, G.; Li, Y.; Cai, Z.; et al. Long non-coding RNA CCAT2 promotes oncogenesis in triple-negative breast cancer by regulating stemness of cancer cells. Pharmacol. Res. 2020, 152, 104628.
45.    Redis, R.S.; Sieuwerts, A.M.; Look, M.P.; Tudoran, O.; Ivan, C.; Spizzo, R.; Zhang, X.; de Weerd, V.; Shimizu, M.; Ling, H.; et al. A novel long non-coding RNA in breast cancer: Expression study and clinical correlations. Oncotarget 2013, 4, 1748–1762.
46.    Osborne, C.K.; Schiff, R.; Fuqua, S.A.; Shou, J. Estrogen receptor: Current understanding of its activation and modulation. Clin. Cancer. Res. 2001, 7, 4338s–4342s.
47.    Sun, M.; Gadad, S.S.; Kim, D.S.; Kraus, W.L. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells. Mol. Cell 2015, 59, 698–711.
48.    Basak, P.; Chatterjee, S.; Bhat, V.; Su, A.; Jin, H.; Lee-Wing, V.; Liu, Q.; Hu, P.; Murphy, L.C.; Raouf, A. Long Non-Coding RNA H19 Acts as an Estrogen Receptor Modulator that is Required for Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Cell. Physiol. Biochem. 2018, 51, 1518–1532.
49.    Chen, L.L. Linking Long Noncoding RNA Localization and Function. Trends Biochem. Sci. 2016, 41, 761–772
50.    Runzhi Wang, Ronghua Wang, Jinjun Tian et al. BTG2 as a tumor targetfor the treatment of luminal A breast cancer. Exp Ther Med. 2022 May; 23(5): 339
51.    Melamed J, Kernizan S, Walden PD. Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell. 2002; 34:28–32.
52.    Wei S, Hao C, Li X, Zhao H, Chen J, Zhou Q. Effects of BTG2 on proliferation inhibition and anti-invasion in human lung cancer cells. Tumour Biol. 2012; 33:1223–1230. doi: 10.1007/s13277-012-0370-y.
53.    Wagener N, Bulkescher J, Macher-Goeppinger S, Karapanagiotou-Schenkel I, Hatiboglu G, Abdel-Rahim M, AbolEnein H, Ghoneim MA, Bastian PJ, Müller SC, et al. Endogenous BTG2 expression stimulates migration of bladder cancer cells and correlates with poor clinical prognosis for bladder cancer patients. Br J Cancer. 2013; 108:973–982.
54.    Zhang YJ, Wei L, Liu M, Li J, Zheng YQ, Gao Y, Li XR. BTG2 inhibits the proliferation, invasion, and apoptosis of MDAMB-231 triple-negative breast cancer cells. Tumour Biol. 2013; 34:1605–1613. doi: 10.10.
55.    Jianing Tang, Zeyu Wu, Zelin Tian et al. OTUD7B stabilizes estrogen receptor α and promotes breast cancer cell proliferation.  Cell Death and Disease (2021) 12:534.
56.    harun, I. M. et al. Subtype-specific modulation of estrogen receptor coactivator interaction by phosphorylation. ACS Chem. Biol. 10, 475–484 (2015).
57.    Cui, C. P. et al. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat. Commun. 9, 4648 (2018).
58.    Pareja, F. et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31, 4599–4608 (2012).
59.    Bremm, A., Moniz, S., Mader, J., Rocha, S. & Komander, D. Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep. 15, 1268–1277 (2014).
60.    Bonacci, T. et al. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J. 37, e98701 (2018).
61.    Erik Kudela, Marek Samec, Lenka Koklesova et al. miRNA Expression Profiles in Luminal A Breast Cancer—Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int. J. Mol. Sci. 2020, 21, 7691.
62.    Wang, J.; Zhao, H.; Tang, D.; Wu, J.; Yao, G.; Zhang, Q. Overexpressions of MicroRNA-9 and MicroRNA-200c in Human Breast Cancers Are Associated with Lymph Node Metastasis. Cancer Biother. Radiopharm. 2013, 28, 283–288.
63.    Sahlberg, K.K.; Bottai, G.; Naume, B.; Burwinkel, B. et al. A Serum MicroRNA Signature Predicts Tumor Relapse and Survival in Triple-Negative Breast Cancer Patients. Clin. Cancer Res. 2015, 21, 1207–1214.
64.    Haakensen, V.D.; Nygaard, V.; Greger, L.; Aure, M.R.; Fromm, B.; Bukholm, I.R.K.; Lüders, T.; Chin, S.-F.; Git, A.; Caldas, C.; et al. Subtype-specific micro-RNA expression signatures in breast cancer progression. Int. J. Cancer 2016, 139, 1117–1128.
65.    Kodahl, A.R.; Zeuthen, P.; Binder, H.; Knoop, A.S.; Ditzel, H.J. Alterations in Circulating miRNA Levels following Early-Stage Estrogen Receptor-Positive Breast Cancer Resection in Post-Menopausal Women. PLoS ONE 2014, 9.
66.    Guo, H.; Zeng, X.; Li, H.; Guo, Y.; Wang, T.; Guo, H.; Zhu, G.; Wang, L.; Zhou, H.; Liu, K.; et al. Plasma miR-1273g-3p acts as a potential biomarker for early Breast Ductal Cancer diagnosis. An. Acad. Bras. Cienc. 2020, 92, e20181203.

Recomonded Articles:

Author(s): Kanchan R. Pagar, Sarika V. Khandbahale

DOI: 10.5958/2231-5713.2019.00023.0         Access: Open Access Read More

Author(s): Abhishek S. Pujari, Nitin A. Gaikwad, Indrajeet V. Mane, Ganesh B. Vambhurkar, Pravin P. Honmane

DOI: 10.5958/2231-5713.2018.00019.3         Access: Open Access Read More

Author(s): Sindhu. T. J, Arathi. K. N, Akhilesh K. J, Anju. Jose, Binsiya K. P, Blessy Thomas, Elizabeth Wilson

DOI: 10.5958/2231-5713.2020.00012.4         Access: Open Access Read More

Author(s): Punasiya Rakesh, Pillai Sujit, Yadav Janeshwer

DOI: 10.5958/2231-5713.2015.00002.1         Access: Open Access Read More

Author(s): Kaviyarasi K., Kanimozhi K., Madhanraj P, Panneerselvam A., Ambikapathy V.

DOI:         Access: Open Access Read More

Author(s): M. Elayarani, P. Shanmuganathan, P. Muthukumaran

DOI:         Access: Open Access Read More

Author(s): Abhishek Soni, Ojasvi Gupta, Hemant Kumar Verma, Dr. Amit Chaudhary

DOI: 10.5958/2231-5713.2019.00032.1         Access: Open Access Read More

Author(s): Siddhi Prakash Fogueri, Sanyuja Satish Nikam, Mukund Vivek Gawade, Harshada Suresh Shetye, Akshata Anil Thakur, Tanvi Ganesh Valanju, Vijay Arjun Jagtap

DOI: 10.5958/2231-5713.2020.00037.9         Access: Open Access Read More

Author(s): Jai Godheja, S. K. Shekhar, D.R. Modi

DOI:         Access: Open Access Read More

Author(s): Miad. Hassan. Jebur.

DOI:         Access: Open Access Read More

Author(s): Ketaki Shinde, Sonam Bendre, Niraj Kale, Suhit Gilda

DOI: 10.52711/2231-5713.2022.00042         Access: Open Access Read More

Author(s): Pawan N. Karwa, Jyoti K. Soundarmal, Pallavi S. Shinde, Swapna R. Jalde

DOI: 10.52711/2231-5713.2022.00008         Access: Open Access Read More

Author(s): S. J. Beula, R. Suthakaran, M. Viswaja, CH. Shankar, G. Sree Lakshmi

DOI: 10.52711/2231-5713.2023.00007         Access: Closed Access Read More

Author(s): Jayhind L Bharti, Anjali M Wankhade, J V Vyas, Vivek V Paithankar, Pratiksha R Morey

DOI: 10.52711/2231-5713.2023.00022         Access: Closed Access Read More

Author(s): Sagar Pol, Vilasrao Kadam, Sujata Jagtap, Sampada Bhosale, Nita Pawar, Ravindra Gaikwad

DOI: 10.52711/2231-5713.2023.00016         Access: Closed Access Read More

Author(s): Kaman Kumar, Pooja Singh, Divya Sharma, Akanksha Singh, Himanshu Gupta, Arjun Singh

DOI: 10.52711/2231-5713.2023.00030         Access: Closed Access Read More

Asian Journal of Pharmacy and Technology (AJPTech.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5713 


Recent Articles




Tags