Author(s):
Vaishnavi Dnyaneshwar Ugale, Gayatri Vilas Uphade, Om Hemant Walzade
Email(s):
vaishnaviugale1108@gmail.com , gayatriuphade1963@gmail.com , omwalzade4619@gmail.com
DOI:
10.52711/2231-5713.2025.00030
Address:
Vaishnavi Dnyaneshwar Ugale, Gayatri Vilas Uphade, Om Hemant Walzade
Matoshri College of Pharmacy, Eklhare, Nashik.
*Corresponding Author
Published In:
Volume - 15,
Issue - 2,
Year - 2025
ABSTRACT:
Artificial Intelligence technologies, such as machine learning and natural language processing, are reshaping drug discovery processes, enhancing medication management, and facilitating personalized patient care. These robots offer various benefits, including improved mobility, decreased obtrusiveness, and limited tissue harm. By exploring through complex organic conditions, miniature robots can convey treatments with extraordinary accuracy, further developing treatment viability and patient results. Microrobots may be injected and dissolve blood clots with inside the mind to deal with stroke patients. Targeted drug delivery to cancerous tumor, enhancing chemotherapy effectiveness. Artificial intelligence predict drug design interaction. Uses of artificial intelligence in medical services is in diagnostics and clinical imaging. Artificial intelligence calculations can dissect clinical pictures, for example, X-beams, CT outputs, and X-rays, to distinguish anomalies, cancers, and different circumstances with high precision. This can possibly work on early identification also, finding, prompting better treatment results.
Cite this article:
Vaishnavi Dnyaneshwar Ugale, Gayatri Vilas Uphade, Om Hemant Walzade. Review on Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2025; 15(2):189-6. doi: 10.52711/2231-5713.2025.00030
Cite(Electronic):
Vaishnavi Dnyaneshwar Ugale, Gayatri Vilas Uphade, Om Hemant Walzade. Review on Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2025; 15(2):189-6. doi: 10.52711/2231-5713.2025.00030 Available on: https://ajptonline.com/AbstractView.aspx?PID=2025-15-2-14
REFERENCE:
1. Berwick DM, Nolan TW, Whittington J. The Triple Aim: Care, health, and cost. Health Affairs. 2008; 27:759–69.
2. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014; 12:573–6.
3. The Health Foundation, Nuffield Trust, The King's Fund. The 8. Turea M. How the ‘Big 4’ tech companies are leading healthcare innovation. Healthcare Weekly, 2019.
4. Dasta JF. Application of artificial intelligence to pharmacy and medicine. health care workforce in England: make or break? The King's Fund, 2018.
5. Working for health and growth: investing in the health workforce. Report of the High- Level Commission on Health Employment and Economic Growth, WHO Library Cataloguing-in- Publication Data. ISBN 978 92 4 151130 8, 2016.
6. Satya Nadella announces strategic collaboration with Novartis. You Tube, 2019.
7. Lashinsky A. Tim Cook on how Apple champions the environment, education, and health care. Fortune. 2017. Hosp Pharm. 1992; 27(4): 319-22.6.
8. Priti D. Makne, Sumit S. Sontakke, Rajkumar D. Lakade, Akanksha S. Tompe and S. S. Patil. Tools Of Artificial lintelligence. World Journal of Pharmaceutical Research. 2022; 12(1): DOI: 10.20959/wjpr20231-26543
9. Jenisha Patel, Dhara Patel, Dhananjay Meshram. Journal of Advancement in Pharmacognosy, Advantages of AI and Tools.
10. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M, Radiomics with artificial intelligence for precision medicine in radiation therapy, J. Radiat. Res, 2019; 60: 150– 157.
11. Eye for Pharma. Artificial intelligence- A Brave New World for Pharma. Available from: https://www.social.eyeforpharma.com/clinical/artificial-intelligence-brave-new- worldpharma. [Last accessed on 2017 Jun 24].
12. Ojha, S., Bhusan Singh, R., Shukla, A., Chadha, H., and Mishra, S. (2024). Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews. 20(1):18-25.
13. Doutel, E., Galindo-Rosales, F. J., and Campo-Deaño, L. Hemodynamics challenges for the navigation of medical micro robots for the treatment of CVDs. Materials. 2021;14(23): 7402.
14. Rassweiler, J. J., Autorino, R., Klein, J., Mottrie, A., Goezen, A. S., Stolzenburg, J. U., and Liatsikos, E. Future of robotic surgery in urology. BJU International. 2017; 120(6): 822- 841.
15. Tian, M., Ma, Z., and Yang, G. Z. Micro/nano systems for controllable drug delivery to the brain. The Innovation. 2024; 5(1).
16. Chen, B., Sun, H., Zhang, J., Xu, J., Song, Z., Zhan, G., and Feng, L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. Small. 2024; 20(1): 2304607
17. Zhang, Y., Zhang, Y., Han, Y., and Gong, X. Micro/nanorobots for medical diagnosis and disease treatment. Micromachines. 2022; 13(5): 648.
18. Silvera-Tawil, D. Robotics in Healthcare: A Survey. SN Computer Science. 2024; 5(1): 189.
19. Safdar, M., Ullah, M., Wahab, A., Hamayun, S., Rehman, M. U., Khan, M. A. and Naeem, M. Genomicin sights into heart health: Exploring the genetic basis of cardiovascular disease. Current Problems in Cardiology. 2024; 49(1): 102182.
20. Patole, V., Tupe, A., Tanpure, S., Swami, R., Vitkare, V., and Jadhav, P. Nanorobotic artificial blood components and its therapeutic applications: A minireview. Irish Journal of Medical Science. 2024: 1-10.
21. Xing, G., Yu, X., Zhang, Y., Sheng, S., Jin, L., Zhu, D. and Lv, F. Macrophages-Based Biohybrid Microrobots for Breast Cancer Photothermal Immunotherapy by Inducing Pyroptosis. Small. 2024; 20(7): 2305526.
22. Tools for the cure against pernicious microorganisms: micro-/nanorobots. Prosthesis. 4(3), 424-443
23. Shevkar, N. (2024). Nanorobots: an emerging tool in medical science (Doctoral Dissertation, Trinity College)
24. Smith, R. (2024). Explosion of Robotics in Healthcare.In the Rise of the Intelligent Health System (pp. 87-111). Productivity Press
25. Cai, Z., Fu, Q., Zhang, S., Fan, C., Zhang, X., Guo, J., and Guo, S. Performance evaluation of a magnetically driven microrobot for targeted drug delivery. Micromachines. 2021; 12(10): 1210.
26. Barua, R. Innovations in Minimally Invasive Surgery: The Rise of Smart Flexible Surgical Robots. InEmerging Technologies for Health Literacy and Medical Practice. 2024: 110-131
27. Zhang, D., Gorochowski, T. E., Marucci, L., Lee, H. T., Gil, B., Li, B. and Yeatman, E. Advanced medical micro-robotics for early diagnosis andtherapeutic interventions. Frontiers in Robotics and AI. 2023; 9: 1086043
28. Wang, Y., Shen, J., Handschuh-Wang, S., Qiu, M., Du, S., and Wang, B. Microrobots for targeted delivery and therapy in digestive system. ACS nano. 2022; 17(1): 27- 50.
29. Wang, T., Li, H., Pu, T., and Yang, L. Micro surgery robots: applications, design, and development. Sensors. 2023; 23(20): 8503.
30. Application of AI in Pharma Industry https://www.upgrad.com/blog/artificial-intelligence- in-pharmaceutical-industry/
31. Nagaravi Kiran T, Suresh Kumar N, Lakshmi GVN, Naseema S, Bhargav SB Scholar Research and Library. Der Pharmacia Lettre. 2021, 13 (5): 06-14
32. Vasim Mansur Aparadh, Nitin Chandrakant Mohire, Gita Nitin Mohire Ritesh Kumar, Abhijit Anil Gaikwad, Ravindra Bhimraj Laware, Tapan Kumar Mahato, Anagha Amit Sarvadnya. Eur. Chem. Bull. 2023,12(Special issue 11): 558-572
33. Ramesh, A.N.; Kambhampati, C.; Monson, J.R.; Drew, P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004; 86: 334
34. Troulis, M., Everett, P., Seldin, E., Kikinis, R., Kaban, L. Development of a three- dimensional treatment planning system based oncomputed tomographic data. Int. J. Oral Maxillofac. Surg. 2002; 31: 349–357.
35. Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunovi´c, H. Artificial intelligence in retina. Prog. Retin.Eye Res. 2018; 67: 1–29.
36. Carreras, J.; Hamoudi, R. Artificial Neural Network Analysis of Gene Expression Data Predicted Non-Hodgkin Lymphoma Subtypes with High Accuracy. Mach. Learn. Knowl. Extr. 2021; 3: 720–739.
37. Carreras, J.; Nakamura, N.; Hamoudi, R. Artificial Intelligence Analysis of Gene Expression Predicted the Overall Survival of Mantle Cell Lymphoma and a Large Pan- Cancer Series. Healthcare. 2022; 10: 155.
38. Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr. Oncol. 2021; 28: 1581–1607.
39. Bang, C.S.; Lee, J.J.; Baik, G.H. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Med.Internet Res. 2020; 22: e21983.
40. Liu, Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J. Gastroenterol. 2021; 27: 1392–1405.
41. Rĺache Brazil the Pharmaceutical Journal Dec. 2007.
42. Tian, M., Ma, Z., and Yang, G. Z. Micro/nano systems for controllable drug delivery to the brain. The Innovation. 2024; 5(1).